Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Measurements of a 1/4-scale model of an explosives firing chamber

Conference ·
OSTI ID:42523

In anticipation of increasingly stringent environmental regulations, Lawrence Livermore National Laboratory (LLNL) proposes to construct a 60-kg firing chamber to provide blast-effects containment for most of its open-air, high-explosive, firing operations. Even though these operations are within current environmental limits, containment of the blast effects and hazardous debris will further drastically reduce emissions to the environment and minimize the generated hazardous waste. The major design consideration of such a chamber is its overall structural dynamic response in terms of long-term containment of all blast effects from repeated internal detonations of high explosives. Another concern is how much other portions of the facility outside the firing chamber must be hardened to ensure personnel protection in the event of an accidental detonation while the chamber door is open. To assess these concerns, a 1/4-scale replica model of the planned contained firing chamber was designed, constructed, and tested with scaled explosive charges ranging from 25 to 125% of the operational explosives limit of 60 kg. From 16 detonations of high explosives, 880 resulting strains, blast pressures, and temperatures within the model were measured to provide information for the final design. Factors of safety for dynamic yield of the firing chamber structure were calculated and compared to the design criterion of totally elastic response. The rectangular, reinforced-concrete chamber model exhibited a lightly damped vibrational response that placed the structure in alternating cycles of tension and compression. During compression, both the reinforcing steel and the concrete remained elastic.

Research Organization:
Lawrence Livermore National Lab., CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
42523
Report Number(s):
UCRL-JC--118313; CONF-9504133--1; ON: DE95009478
Country of Publication:
United States
Language:
English