Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

(Pentamethylcyclopentadienyl)molybdenum(IV) chloride. Synthesis, structure, and properties

Journal Article · · Inorganic Chemistry
; ;  [1]
  1. Univ. of Maryland, College Park, MD (United States); and others
Three different syntheses of trichloro(pentamethylcyclopentadienyl)molybdenum(IV) are described, I.E. (1) thermal decarbonylation of Cp{sup *}MoCl{sub 3}(CO){sub 2}, (2) reduction of Cp{sup *}MoCl{sub 4}, and (3) chlorination of [Cp{sup *}MoCl{sub 2}]{sub 2}. A fourth route (conproportionation of [Cp{sup *}MoCl{sub 2}]{sub 2} and Cp{sup *}MoCl{sub 4}) has been investigated by {sup 1}H-NMR. The product has a dinuclear, dichloro-bridged structure with a four-legged piano stool geometry around each metal atom; the two piano stools have a mutual anti arrangement and the two metals are 3.888(1) {Angstrom} from each other, indicating the absence of a direct metal-metal bonding interaction. Crystal data: monoclinic, space group P2{sub 1}/n, a = 8.424(1) {Angstrom}, b = 13.323(4) {Angstrom}, c = 11.266(2) {Angstrom}, {beta} = 93.87(1){degrees}, V = 1261.6(8) {Angstrom}{sup 3}, Z = 2, R = 0.038, R{sub w} = 0.057 for 127 parameters and 1350 observed reflections with F{sub o}{sup 2} > 3{sigma}(F{sub o}{sup 2}). The temperature dependent magnetic moment of the material could be fit to the sum of two Bleany-Bowers equations. [Cp{sup *}MoCl{sub 3}]{sub 2} reacts readily with CO, Cl{sup {minus}}, and PMe{sub 3} to afford Cp{sup *}MoCl{sub 3}(CO){sub 2}, [Cp{sup *}MoCl{sub 4}]{sup {minus}}, and Cp{sup *}MoCl{sub 3}(PMe{sub 3}), respectively, while the reaction with 1,2-bis(diphenylphosphino)ethane (dppe) affords the reduction product Cp{sup *}MoCl{sub 2}(dppe).
Sponsoring Organization:
USDOE
OSTI ID:
420967
Journal Information:
Inorganic Chemistry, Journal Name: Inorganic Chemistry Journal Issue: 17 Vol. 33; ISSN 0020-1669; ISSN INOCAJ
Country of Publication:
United States
Language:
English