Prediction of creep-rupture life of unidirectional titanium matrix composites subjected to transverse loading
- Univ. of Dayton Research Inst., OH (United States)
- WL/MLLN, Wright-Patterson AFB, OH (United States). Materials Directorate
Titanium matrix composites (TMCs) incorporating unidirectional fiber reinforcement are considered as enabling materials technology for advanced engines which require high specific strength and elevated temperature capability. The resistance of unidirectional TMCs to deformation under longitudinally applied sustained loading at elevated temperatures has been well documented. Many investigators have shown that the primary weakness of the unidirectional TMC is its susceptibility to failure under very low transverse loads, especially under sustained loading. Hence, a reliable model is required to predict the creep-rupture life of TMCs subjected to different transverse stress levels over a wide range of temperatures. In this article, the authors propose a model to predict the creep-rupture life of unidirectional TMC subjected to transverse loading based on the creep-rupture life of unidirectional TMC subjected to transverse loading based on the creep-rupture behavior of the corresponding fiberless matrix. The model assumes that during transverse loading, the effective load-carrying matrix ligament along a row of fibers controls the creep-rupture strength and the fibers do not contribute to the creep resistance of the composite. The proposed model was verified using data obtained from different TMC fabricated using three matrix compositions, which exhibited distinctly different types of creep behavior. The results show that the creep-rupture life of the transverse TMC decreases linearly with increasing ratio of the fiber diameter to the ply thickness. The creep-rupture life is also predicted to be independent of fiber spacing along the length of the specimen.
- Sponsoring Organization:
- USDOE
- OSTI ID:
- 417864
- Journal Information:
- Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, Journal Name: Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Journal Issue: 10 Vol. 27; ISSN 1073-5623; ISSN MMTAEB
- Country of Publication:
- United States
- Language:
- English
Similar Records
Numerical modeling of the creep behavior of unidirectional eutectic composites
Acoustic emission and fiber damage in creep of a unidirectional SCS-6/Ti-15-3 metal matrix composite at 450 C