skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cost impacts of anti-reflection coatings on silicon solar cells

Conference ·
OSTI ID:417717
;  [1]
  1. BTU International, North Billerica, MA (United States)

Despite the early discovery of the Photovoltaic effect by Bechquerel almost 107 years ago, its commercial value had never been seriously considered because of its high cost in production and low energy conversion efficiency. A familiar predicament has restrained demand for photovoltaic application. People won`t use them until they are affordable, but they won`t get affordable until there is a mass market for them. As has happened in other expensive markets, businesses are desperate to crack the conundrum. Since the oil shortage in the 70s, crystalline solar cell efficiency has increased from 8% to over 13% to date on 100 mm{sup 2} commercial silicon cells by refining the process with advanced device technologies. Together with increased production volume, the cost per watt has been reduced from over $8 in the 80`s to as low as $3 today. However, the cost is still considered too high to compete with fossil fuel energy. Further cost reduction is necessary by improving the cell and module conversion efficiency. The increase in cell efficiency and the process to achieve the goal, however, have to follow the golden rule of economics that the operational cost is a fraction of the profit in return. It is shown numerically in this paper that Anti Reflection (AR) coating on silicon solar cells by Atmospheric Pressure Chemical Vapor Deposition (APCVD) technique for large volume production could have over 650% profit return.

OSTI ID:
417717
Report Number(s):
CONF-960401-; ISBN 1-55899-329-0; TRN: IM9705%%90
Resource Relation:
Conference: Spring meeting of the Materials Research Society (MRS), San Francisco, CA (United States), 8-12 Apr 1996; Other Information: PBD: 1996; Related Information: Is Part Of Thin films for photovoltaic and related device applications; Ginley, D. [ed.] [National Renewable Energy Lab., Golden, CO (United States)]; Catalano, A. [ed.] [Technology Assessment Group, Boulder, CO (United States)]; Schock, H.W. [ed.] [Univ. Stuttgart (Germany)]; Eberspacher, C. [ed.] [Unisun, Newbury Park, CA (United States)]; Peterson, T.M. [ed.] [Electric Power Research Inst., Palo Alto, CA (United States)]; Wada, Takahiro [ed.] [Matsushita Electric Industries Co., Ltd., Kyoto (Japan)]; PB: 621 p.; Materials Research Society symposium proceedings, Volume 426
Country of Publication:
United States
Language:
English