Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Effect of surface condition on the aqueous corrosion behavior of iron aluminies

Conference ·
OSTI ID:416495
;  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States)

The effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion characteristics of Fe-Al-based alloys were evaluated by electrochemical methods. Cyclic anodic polarization evaluations were conducted at room temperature in a mild acid-chloride solution (pH = 4,200 ppm Cl{sup {minus}}) on the Fe{sub 3}Al-based iron aluminides, FA-84 (Fe-28Al-2Cr-0.05B, at %), FA-129 (Fe-28Al-5Cr-0.5Nb-0.2C, at %), and FAL-Mo (Fe-28Al-5Cr-1Mo-0.04B-0.08Zr, at %), on the FeAl-based iron aluminide, FA-385 (Fe-35.65Al-0.20Mo-0.05Zr-0.11C, at %). The surface conditions evaluated were: As received (i.e. with the retained high-temperature oxides), mechanically cleaned (ground through 600-grit SiC paper), and chemically cleaned (10% HNO{sub 3}, 2%HF, at 43 {degree}C). The principal electrochemical parameter of interest was the critical putting potential with lower values indicating less resistance to chloride-induced localized corrosion. For all materials evaluated, the critical pitting potential was found to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. Mechanisms responsible for the detrimental high-temperature-oxide effect are under study.

Research Organization:
Oak Ridge National Lab., TN (United States)
OSTI ID:
416495
Report Number(s):
ORNL/FMP--95/1; CONF-9505204--; ON: DE96001412
Country of Publication:
United States
Language:
English