skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nitrous oxide emissions control by reburning

Journal Article · · Combustion and Flame
; ;  [1];  [2]
  1. Univ. of Washington, Seattle, WA (United States). Combustion Labs.
  2. Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

Fluidized bed coal combustors emit much higher concentrations of nitrous oxide (N{sub 2}O) than do most other combustion systems. This is of concern because N{sub 2}O is highly stable in the atmosphere, and may contribute to both the greenhouse effect and to stratospheric ozone depletion. In this article laboratory results are presented on N{sub 2}O removal by the reburning (i.e., afterburning) method. The destruction of N{sub 2}O is observed during contact between hot flue gases containing N{sub 2}O and various reburning fuels. A laboratory combustion reactor is used to sequentially generate the hot combustion gas, and to put this gas in contact with N{sub 2}O and reburning fuel under well-characterized conditions. The initial N{sub 2}O in the primary combustion products is between 200 and 350 ppmv (dry). The temperature of the primary combustion products is varied between 1,080 and 1,370 K, and the oxygen level of these gases is varied between 3.3 and 4.8% (dry). Five reburning fuels are tested. The rank order of reburning effectiveness (based on equal heat input by the reburning fuels) is H{sub 2} > CH{sub 4} > C{sub 2}H{sub 4} and C{sub 2}H{sub 6} > CO. Experiments are also performed with the primary combustor operated fuel rich. Without any reburning fuel added, removal of large amounts of N{sub 2}O are obtained when the fuel-air equivalence ratio of the primary combustion is about 1.1. The experimental results are presented, discussed, and compared to chemical kinetic modeling. Also, some discussions of the practical implications is presented.

OSTI ID:
413495
Journal Information:
Combustion and Flame, Vol. 107, Issue 4; Other Information: PBD: Dec 1996
Country of Publication:
United States
Language:
English