Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Null geodesic surfaces and Goldberg–Sachs theorem in complex Riemannian spaces

Journal Article · · Journal of Mathematical Physics
DOI:https://doi.org/10.1063/1.522506· OSTI ID:4130943
An extension of the Goldberg--Sachs theorem for the case of a complex V$sub 4$ is given with a simple proof. The interpretation of the theorem, however, no longer applies the concept of the geodesic and shearless congruence of null directions; instead, the existence of a geodesic 2-surface (complex), the tangent vectorial space to which (I) contains only null vectors, (II) is parallelly propagated along the surface, is now essential. (AIP)
Research Organization:
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico 14, D.F., Mexico
Sponsoring Organization:
USDOE
NSA Number:
NSA-33-011180
OSTI ID:
4130943
Journal Information:
Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 12 Vol. 16; ISSN JMAPAQ; ISSN 0022-2488
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English

Similar Records

Generalization of a Theorem by Goldberg and Sachs
Journal Article · Sun Mar 31 23:00:00 EST 1963 · Journal of Mathematical Physics (New York) (U.S.) · OSTI ID:4719968

EXACT EMPTY-SPACE METRICS CONTAINING GEODESIC RAYS
Thesis/Dissertation · Sun Dec 31 23:00:00 EST 1961 · OSTI ID:4158364

Singularities in geodesic surface congruence
Journal Article · Mon Sep 15 00:00:00 EDT 2008 · Physical Review. D, Particles Fields · OSTI ID:21254224