Null geodesic surfaces and Goldberg–Sachs theorem in complex Riemannian spaces
Journal Article
·
· Journal of Mathematical Physics
An extension of the Goldberg--Sachs theorem for the case of a complex V$sub 4$ is given with a simple proof. The interpretation of the theorem, however, no longer applies the concept of the geodesic and shearless congruence of null directions; instead, the existence of a geodesic 2-surface (complex), the tangent vectorial space to which (I) contains only null vectors, (II) is parallelly propagated along the surface, is now essential. (AIP)
- Research Organization:
- Centro de Investigacion y de Estudios Avanzados del IPN, Mexico 14, D.F., Mexico
- Sponsoring Organization:
- USDOE
- NSA Number:
- NSA-33-011180
- OSTI ID:
- 4130943
- Journal Information:
- Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 12 Vol. 16; ISSN JMAPAQ; ISSN 0022-2488
- Publisher:
- American Institute of Physics (AIP)
- Country of Publication:
- United States
- Language:
- English
Similar Records
Generalization of a Theorem by Goldberg and Sachs
EXACT EMPTY-SPACE METRICS CONTAINING GEODESIC RAYS
Singularities in geodesic surface congruence
Journal Article
·
Sun Mar 31 23:00:00 EST 1963
· Journal of Mathematical Physics (New York) (U.S.)
·
OSTI ID:4719968
EXACT EMPTY-SPACE METRICS CONTAINING GEODESIC RAYS
Thesis/Dissertation
·
Sun Dec 31 23:00:00 EST 1961
·
OSTI ID:4158364
Singularities in geodesic surface congruence
Journal Article
·
Mon Sep 15 00:00:00 EDT 2008
· Physical Review. D, Particles Fields
·
OSTI ID:21254224