The Tuscaloosa Formation revisited
- Geological Survey, Denver, CO (United States)
A petrologic study of the Upper Cretaceous lower Tuscaloosa Formation in the Gulf Coast from depths of 2,700 to 6,000 in indicates that anomalously high porosity (>20 percent) in deep gas and condensate-bearing sandstones (5,000 to 6,000 m) is approximately evenly divided between primary and secondary porosity. Primary porosity was preserved by early, iron-rich grain-rimming chlorite and quartz overgrowths. Most secondary porosity resulted from dissolution of carbonate cements. Moldic pores outlined by chlorite were created by dissolution of unstable feldspars and rock fragments. Interparticle clay microporosity is significant in sandstones containing authigenic kaolinite and (or) chlorite. Pores were filled in the deepest sandstones by quartz overgrowths and a late magnesium-rich chlorite that is commonly obscured by fibrous illite. Voids were created in the early Tertiary(?) by acidic meteoric waters and during deep burial by brines carrying organic and inorganic acids that were released during hydrocarbon maturation in neighboring shales. Oil fills dissolution voids in ankerite cement and albitized plagioclase and coats most authigenic minerals. Two-phase primary fluid inclusions in quartz overgrowths which also contain oil-bearing inclusions have homogenization temperatures between 125{degrees}C and 134{degrees}C. These temperatures combined with a burial history reconstruction indicate that hydrocarbons migrated into Tuscaloosa sandstones during the Miocene. Overpressuring began in the middle Tertiary along with gas generation in the Tuscaloosa. These events coincided with the end of deep meteoric flow through the Gulf section and the beginning of a compactional hydrologic regime. Precipitation of quartz overgrowths and hydrocarbons at this time locally created effective pressure seals.
- OSTI ID:
- 411892
- Report Number(s):
- CONF-9610180--
- Journal Information:
- AAPG Bulletin, Journal Name: AAPG Bulletin Journal Issue: 9 Vol. 80; ISSN 0149-1423; ISSN AABUD2
- Country of Publication:
- United States
- Language:
- English
Similar Records
Diagenesis as related to burial history, pressure regimes, and low-permeability zones in the upper Cretaceous lower Tuscaloosa Formation, Mississippi and Louisiana
Reservoir characterization of Tuscaloosa sand by mineralogical and petrophysical data