Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Signal transduction through p53-dependent pathway after low-dose ionizing radiation

Journal Article · · Transactions of the American Nuclear Society
OSTI ID:411527

In the study of cell-cycle events, recent attention has focused on the signal transduction pathway in which a tumor-suppressor protein, wild-type (wt) p53 protein, acts as the key protein. A major advance in recent years has been the partial elucidation of the G{sub 1}-arrest mechanism. However, the transcriptional regulation mechanisms of components of the cell-cycle machinery remain unknown. We have investigated the induction of p53, WAF1, and cdk2 after gamma-ray irradiation using two human glioblastoma cell lines, U-87MG bearing the wt p53 gene and the other, T98G, a mutant gene. After the cells have been irradiated with gamma rays at 3 Gy, the level of p53 and WAF1 mRNAs in U-87MG increased gradually for up to 10 h, whereas these mRNAs were overexpressed in T98G, and these levels remained relatively stable after irradiation. In an attempt to examine the induction of cdk2 after gamma-ray irradiation, we analyzed the level of cdk2 mRNA using the reverse transcriptase-polymerase chain reaction (RT-PCR) technique. We calculated the amounts of cdk2 mRNA relative to that of b-actin mRNA in both cell lines, then plotted them against those in nonirradiated cells. After irradiation, the level of cdk2 mRNA in U-87MG gradually increased more than twofold by 10 h after gamma-ray irradiation, whereas the level of the mRNA in T98G remained relatively stable after irradiation. This result demonstrates that wtp53 induces the expression of not only WAF1 but also cdk2. The induction of wt p53 protein accumulation in rats exposed to x radiation is also discussed.

OSTI ID:
411527
Report Number(s):
CONF-951006--
Journal Information:
Transactions of the American Nuclear Society, Journal Name: Transactions of the American Nuclear Society Vol. 73; ISSN 0003-018X; ISSN TANSAO
Country of Publication:
United States
Language:
English

Similar Records

Binding sequence-dependent regulation of the human proliferating cell nuclear antigen promoter by p53
Journal Article · Fri Apr 15 00:00:00 EDT 2005 · Experimental Cell Research · OSTI ID:20717575

Hdm2 and Nitric Oxide Radicals Contribute to the P53-Dependent Radioadaptive Response
Journal Article · Sun Jun 01 00:00:00 EDT 2008 · International Journal of Radiation Oncology, Biology and Physics · OSTI ID:21124289

Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53
Journal Article · Wed Aug 01 00:00:00 EDT 1990 · Proceedings of the National Academy of Sciences of the United States of America; (USA) · OSTI ID:5628592