Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Hydrologic data for the Idaho National Engineering Laboratory site, Idaho

Technical Report ·
DOI:https://doi.org/10.2172/4094345· OSTI ID:4094345
The Idaho Chemical Processing Plant (ICPP) discharges low-level waste and chemical waste directly to the Snake River Plain aquifer through a 600-foot (180 meter) disposal well. Most of the radioactivity is removed by distillation and ion exchange prior to being discharged into the well. During 1971 to 1973, the well was used to dispose of 404 curies of radioactivity, of which 389 curies were tritium (96 percent). The average yearly discharge was about 300 million gallons (1.1 x 10$sup 9$ liters). The distribution of waste products in the Snake River Plain aquifer covers about 15 square miles (30 square kilometers). Since disposal began in 1952, the wastes have migrated about 5 miles (8 kilometers) downgradient from discharge points. The perched ground-water body contains tritium, chromium-51, cobalt-60, and strontium-90. Radionuclides are subject to radioactive decay, sorption, and dilution by dispersion in the aquifer. Chemical wastes are subject to sorption and dilution by dispersion. Waste plumes south of the ICPP containing tritium, sodium, and chloride have been mapped and all cover a similar area. The plumes follow generally southerly flow lines and are widely dispersed in the aquifer. The waste plume of strontium-90 covers a much smaller area of the aquifer, about 1.5 square miles (4 square kilometers). Based on the relatively small size of the plume, it would appear that the strontium-90 is sorbed from solution as it moves through the Snake River Plain aquifer. (auth)
Research Organization:
IDO (Idaho Operations Office, Idaho Falls, ID (United States))
Sponsoring Organization:
US Energy Research and Development Administration (ERDA)
NSA Number:
NSA-33-020190
OSTI ID:
4094345
Report Number(s):
IDO--22055
Country of Publication:
United States
Language:
English