Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Kinetics of silica particle formation in nonionic W/O microemulsions from TEOS

Journal Article · · AIChE Journal
;  [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

The kinetics of silica particle formation by the ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) in water-in-oil (W/O) microemulsions containing a nonionic surfactant was investigated using Fourier-transform infrared spectroscopy, transmission electron microscopy, and light-scattering techniques. The results show that TEOS hydrolysis and silica-particle growth occur at the same rate, indicating the growth of silica particles is rate-controlled by the hydrolysis of TEOS. The rate of TEOS hydrolysis in microemulsions is first order with respect to the concentration of aqueous ammonia (29 wt. % NH{sub 3}), but depends weakly on the concentration of water. Based on the fact that TEOS hydrolysis follows a nucleophilic substitution of the TEOS`s ethoxy group with hydroxyl ion, the kinetic data suggest that both water and ammonia remain predominantly in W/O microemulsion droplets. The rate of TEOS hydrolysis also depends on the surfactant concentration that controls the molecular contact between hydroxyl ions and TEOS in the solution. Due to the reaction-controlled growth mechanism, the silica-particle size distribution retains virtually the same shape over the growth period. The final average size of silica particles can be varied from 26 to 43 nm by adjusting concentrations of water and surfactant. Increasing the water concentration decreases the average size and uniformity of silica particles. For a given water concentration, the smallest and most uniform silica particles are produced at intermediate water-to-surfactant molar ratios (about 1.9). The results are discussed in terms of the effect of water concentration on the stability of the hydrolyzed silica reacting species during the nucleation of particles and of the water-to-surfactant molar ratio on the compartmentalization of silica species in microemulsions.

OSTI ID:
404594
Journal Information:
AIChE Journal, Journal Name: AIChE Journal Journal Issue: 11 Vol. 42; ISSN 0001-1541; ISSN AICEAC
Country of Publication:
United States
Language:
English

Similar Records

Synthesis of nanosize silica in aerosol OT reverse microemulsions
Journal Article · Tue Feb 28 23:00:00 EST 1995 · Journal of Colloid and Interface Science; (United States) · OSTI ID:6492917

Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethyorthosilicate
Journal Article · Sat Nov 30 23:00:00 EST 1996 · Industrial and Engineering Chemistry Research · OSTI ID:419842

The base catalyzed hydrolysis and condensation reactions of dilute and concentrated TEOS (Tetraethylorthosilicate) solutions: Draft
Conference · Sat Dec 31 23:00:00 EST 1988 · OSTI ID:5853179