skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Locomotor damage in rats after X-irradiation in utero

Journal Article · · Experimental Neurology

Alterations in gait were found in rats after whole-body irradiation with 125 R on day 14, 15, and 16 of gestation. No effects on locomotion were detected after irradiation on day 17 with 125 R or after irradiation on day 14 with 50 R. A technique was set up for quantitative evaluation of locomotion based on a modification of other methods. Walking patterns of irradiated rats were recorded, when they were adults, by requiring them to walk up a 10$sup 0$ incline through a corridor after their feet had been dipped in ink. Rats irradiated on gestational day 14 had an in-phase, hopping gait with the sine of the angle between the hind feet and the direction of progression over 0.9. Rats irradiated on gestational days 15 and 16 had an alternating, waddling gait with wider stance and broader angle than control rats. Histologic examination of serial sections of the brains of these rats showed that the 14-day rats lacked all telencephalic commissures except for a few fibers which crossed in some rats. There was a progressive improvement in the condition of the anterior and ventral hippocampal commissures up to day 17, but the corpus callosum and doral hippocampal commissure were lacking or markedly reduced in all day 17 rats. No animals showed damage to the mesencephalic posterior commissure. Since rats which used the in-phase mode of locomotion were never observed to use alternating gait, the possible causal relationship of the commissural damage to the altered locomotor patterns was considered. In view of the restricted period of damage found for the anterior and ventral hippocampal commissures and the restriction of altered locomotion to damage in the same period, primary involvement of the corpus callosum and dorsal hippocampal commissure could be excluded, but a possible role for the other telencephalic commissures remained. (auth)

Research Organization:
Univ. of Kansas, Kansas City
Sponsoring Organization:
USDOE
NSA Number:
NSA-33-029701
OSTI ID:
4038429
Journal Information:
Experimental Neurology, Vol. 48, Issue 2; Other Information: Orig. Receipt Date: 30-JUN-76; ISSN 0014-4886
Country of Publication:
United States
Language:
English