skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Morphology of multilayer Ag/Ag(100) films versus deposition temperature: STM analysis and atomistic lattice-gas modeling

Journal Article · · Physical Review B

Scanning tunneling microscopy is used to analyze the nanoscale morphology of 25 ML films of Ag deposited on Ag(100) at temperatures (T) between 55 and 300 K. A transition from self-affine growth to ''mound formation'' occurs as T increases above about 140 K. The roughness decreases with increasing T up until 140 K in the self-affine growth regime, and then increases until about 210 K before decreasing again in the mounding regime. We analyze mounding behavior via a lattice-gas model incorporating: downward funneling of depositing atoms from step edges to lower fourfold hollow adsorption sites; terrace diffusion of adatoms with a barrier of 0.40 eV leading to irreversible island formation in each layer; efficient transport of adatoms along island edges to kink sites; and downward thermal transport of adatoms inhibited by a step-edge barrier of 0.06--0.07 eV along close-packed step edges (but with no barrier along kinked or open steps). This model reasonably recovers the T-dependence of not just the roughness, but also of the mound slopes and lateral dimensions above 190 K. To accurately describe lateral dimensions, an appropriate treatment of the intralayer merging of growing islands is shown to be critical. To describe behavior below 190 K, one must account for inhibited rounding of kinks by adatoms at island edges, as this controls island shapes, and thus the extent of open steps and of easy downward transport. Elsewhere, we describe the low-T regime of self-affine growth (with no terrace diffusion) accounting for a breakdown of the simple downward funneling picture.

Sponsoring Organization:
(US)
OSTI ID:
40205569
Journal Information:
Physical Review B, Vol. 63, Issue 8; Other Information: DOI: 10.1103/PhysRevB.63.085401; Othernumber: PRBMDO000063000008085401000001; 003108PRB; PBD: 15 Feb 2001; ISSN 0163-1829
Publisher:
The American Physical Society
Country of Publication:
United States
Language:
English