skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Silicon thin film homoepitaxy by rapid thermal atmospheric-pressure chemical vapor deposition (RT-APCVD)

Book ·
OSTI ID:400683

The homoepitaxy of thin film silicon layers in a horizontal, atmospheric pressure RTCVD reactor is reported. The experiments were conducted in a temperature range from 900 C to 1,300 C employing the precursor trichlorosilane (TCS) and the dopant trichloroborine (TCB) diluted in hydrogen. The epilayers were evaluated by Nomarski microscopy, Rutherford backscattering spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the thin film were analyzed by sheet resistance and four point probe characterization methods. The authors propose that the responsible mechanisms for the observed growth decline at higher precursor concentration in hydrogen are due to the reaction of the gaseous HCl with the silicon surface and the supersaturation of silicon.

OSTI ID:
400683
Report Number(s):
CONF-960401-; ISBN 1-55899-332-0; TRN: IM9650%%88
Resource Relation:
Conference: Spring meeting of the Materials Research Society (MRS), San Francisco, CA (United States), 8-12 Apr 1996; Other Information: PBD: 1996; Related Information: Is Part Of Rapid thermal and integrated processing 5; Gelpey, J.C. [ed.] [AST Elektronik USA, Inc., Lynnfield, MA (United States)]; Oeztuerk, M.C. [ed.] [North Carolina State Univ., Raleigh, NC (United States)]; Thakur, R.P.S. [ed.] [Micron Technology, Inc., Boise, ID (United States)]; Fiory, A.T. [ed.] [Bell Labs., Murray Hill, NJ (United States). Lucent Technology]; Roozeboom, F. [ed.] [Philips Research, Eindhoven (Netherlands)]; PB: 400 p.; Materials Research Society symposium proceedings, Volume 429
Country of Publication:
United States
Language:
English