skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Monolithically integrated active waveguides and lasers using rare-earth doped spin-on glass

Abstract

This LDRD program No. 3505.230 explored a new approach to monolithic integration of active waveguides and rare-earth solid state lasers directly onto III-V substrates. It involved selectively incorporating rare-earth ions into spin-on glasses (SOGs) that could be solvent cast and then patterned with conventional microelectronic processing. The patterned, rare-earth spin-on glasses (RESOGs) were to be photopumped by laser diodes prefabricated on the wafer and would serve as directly integrated active waveguides and/or rare-earth solid state lasers.

Authors:
; ;  [1]
  1. and others
Publication Date:
Research Org.:
Sandia National Labs., Albuquerque, NM (United States)
Sponsoring Org.:
USDOE, Washington, DC (United States)
OSTI Identifier:
399670
Report Number(s):
SAND-96-2129
ON: DE97000844; TRN: 96:006362
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: Sep 1996
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING NOT INCLUDED IN OTHER CATEGORIES; WAVEGUIDES; DESIGN; SOLID STATE LASERS; LASER MATERIALS; RARE EARTHS; DOPED MATERIALS; GLASS; SPIN GLASS STATE

Citation Formats

Ashby, C.I.H., Sullivan, C.T., and Vawter, G.A. Monolithically integrated active waveguides and lasers using rare-earth doped spin-on glass. United States: N. p., 1996. Web. doi:10.2172/399670.
Ashby, C.I.H., Sullivan, C.T., & Vawter, G.A. Monolithically integrated active waveguides and lasers using rare-earth doped spin-on glass. United States. doi:10.2172/399670.
Ashby, C.I.H., Sullivan, C.T., and Vawter, G.A. Sun . "Monolithically integrated active waveguides and lasers using rare-earth doped spin-on glass". United States. doi:10.2172/399670. https://www.osti.gov/servlets/purl/399670.
@article{osti_399670,
title = {Monolithically integrated active waveguides and lasers using rare-earth doped spin-on glass},
author = {Ashby, C.I.H. and Sullivan, C.T. and Vawter, G.A.},
abstractNote = {This LDRD program No. 3505.230 explored a new approach to monolithic integration of active waveguides and rare-earth solid state lasers directly onto III-V substrates. It involved selectively incorporating rare-earth ions into spin-on glasses (SOGs) that could be solvent cast and then patterned with conventional microelectronic processing. The patterned, rare-earth spin-on glasses (RESOGs) were to be photopumped by laser diodes prefabricated on the wafer and would serve as directly integrated active waveguides and/or rare-earth solid state lasers.},
doi = {10.2172/399670},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Sep 01 00:00:00 EDT 1996},
month = {Sun Sep 01 00:00:00 EDT 1996}
}

Technical Report:

Save / Share:
  • These slides cover the following topics: Mid-IR lasers in crystals using two-tone RBL (Single-dopant two-tone RBLs: Tm 3+, Er 3+, and Co-doped two-tone RBLs: (Yb 3+, Nd 3+) and (Ho 3+, Tm 3+); Advanced approaches to RBL crystals (Precursor purification, Micro-pulling-down crystal growth, and Bridgman crystal growth); Advanced approaches to RBL fibers (Materials for RBL glass fibers, Micro-structured fibers for RBL, and Fiber preform synthesis); and finally objectives.
  • Applications in remote-sensing and military countermeasures have driven a need for compact, solid-state mid-IR lasers. Due to multi-phonon quenching, non-traditional hosts are needed to extend current solid-state, room-temperature lasing capabilities beyond {approx} 4 {micro}m. Traditional oxide and fluoride hosts have effective phonon energies in the neighborhood of 1000 cm{sup -1} and 500 cm{sup -1}, respectively. These phonons can effectively quench radiation above 2 and 4 {micro}m, respectively. Materials with lower effective phonon energies such as sulfides and chlorides are the logical candidates for mid-IR (4-10 {micro}m) operation. In this report, laser action is demonstrated in two such hosts, CaGa{sub 2}S{submore » 4} and KPb{sub 2}Cl{sub 5}. The CaGa{sub 2}S{sub 4}:Dy{sup 3+} laser operating at 4.3 {micro}m represents the first sulfide laser operating beyond 2 {micro}m. The KPb{sub 2}Cl{sub 5}:Dy{sup 3+} laser operating at 2.4 {micro}m represents the first operation of a chloride-host laser in ambient conditions. Laser action is also reported for CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 2.4 {micro}m, CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 1.4 {micro}m, and KPb{sub 2}Cl{sub 5}:Nd{sup 3+} at 1.06 {micro}m. Both host materials have been fully characterized, including lifetimes, absorption and emission cross sections, radiative branching ratios, and radiative quantum efficiencies. Radiative branching ratios and radiative quantum efficiencies have been determined both by the Judd-Ofelt method (which is based on absorption measurements), and by a novel method described herein which is based on emission measurements. Modeling has been performed to predict laser performance, and a new method to determine emission cross section from slope efficiency and threshold data is developed. With the introduction and laser demonstration of rare-earth-doped CaGa{sub 2}S{sub 4} and KPb{sub 2}Cl{sub 5}, direct generation of mid-IR laser radiation in a solid-state host has been demonstrated. In KPb{sub 2}Cl{sub 5}, predictions indicate that laser operation to 9 {micro}m may be possible, a wavelength previously considered unreachable in a room-temperature, solid-state host.« less
  • A monolithically integrated photonic circuit is disclosed combining a semiconductor source of excitation light with an optically active waveguide formed on the substrate. The optically active waveguide is preferably formed of a spin-on glass to which are added optically active materials which can enable lasing action, optical amplification, optical loss, or frequency conversion in the waveguide, depending upon the added material. 4 figs.
  • A monolithically integrated photonic circuit combining a semiconductor source of excitation light with an optically active waveguide formed on the substrate. The optically active waveguide is preferably formed of a spin-on glass to which are added optically active materials which can enable lasing action, optical amplification, optical loss, or frequency conversion in the waveguide, depending upon the added material.