Global Minimum Principle for Schr{umlt o}dinger Equation Inverse Scattering
Journal Article
·
· Physical Review Letters
- Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)
A global minimum principle is reported for inverse scattering for Schr{umlt o}dinger{close_quote}s equation without bound states. For the one-dimensional problem, the line integral of the potential on the interval {l_brace}{minus}{infinity},{ital x}{r_brace} can be found by minimizing a certain functional of the scattering amplitude and a variational wave field. In three dimensions, the minimum of a closely related functional is shown to yield {minus}{integral}{ital d}{sup 3}y{nu}(y)/{vert_bar}x{minus}y{vert_bar}{sup 2}, where {nu}(x) is the potential. {copyright} {ital 1996 The American Physical Society.}
- Research Organization:
- Ames National Laboratory
- DOE Contract Number:
- W-7405-ENG-82
- OSTI ID:
- 397640
- Journal Information:
- Physical Review Letters, Journal Name: Physical Review Letters Journal Issue: 20 Vol. 77; ISSN 0031-9007; ISSN PRLTAO
- Country of Publication:
- United States
- Language:
- English
Similar Records
Beyond the Schr{umlt o}dinger Equation: Quantum Motion with Traversal Time Control
Schr{umlt o}dinger-like equation for a nonrelativistic electron in a photon field of arbitrary intensity
Path integral solution of the Schr{umlt o}dinger equation in curvilinear coordinates: A straightforward procedure
Journal Article
·
Sun Nov 30 23:00:00 EST 1997
· Physical Review Letters
·
OSTI ID:554401
Schr{umlt o}dinger-like equation for a nonrelativistic electron in a photon field of arbitrary intensity
Journal Article
·
Wed Jul 01 00:00:00 EDT 1998
· Physical Review A
·
OSTI ID:638780
Path integral solution of the Schr{umlt o}dinger equation in curvilinear coordinates: A straightforward procedure
Journal Article
·
Sun Sep 01 00:00:00 EDT 1996
· Journal of Mathematical Physics
·
OSTI ID:286923