skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Factors affecting the process performance of biofiltration

Book ·
OSTI ID:395329
; ;  [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Civil Engineering

Biofiltration is an emerging biological treatment technology for the removal of airborne VOCs from industrial process waste streams. Removal of air-phase VOCs by biofiltration is accomplished by contacting a process airstream with an active microbial biofilm attached to a solid phase packing. VOCs that partition into the biofilm are aerobically oxidized to the endproducts of water, carbon dioxide and salts. A multiple reactor biofiltration pilot plant test program has been in progress at the University of Minnesota Environmental Engineering Laboratories since 1992. The primary goal of the program is to study factors that affect biofiltration process performance. Initial results of this test program were reported in a previous conference paper and master`s thesis. This paper presents the results of more recent studies that focus on the effects of: (1) biofilm accumulation (which in turn causes a decrease in biofilter bed porosity and packing bed surface area), (2) rates of nutrient addition, and (3) chemical properties of the target contaminant, on biofiltration removal performance. Removal performance was evaluated by determining biofilter removal capacities and efficiencies for various substrate feeds. The performance parameters were measured under constant contaminant inlet concentrations and under constant temperature. Three VOCs were selected for study and they are: MEK, (methyl ethyl ketone), xylene, and hexane. MEK, xylene, and hexane were chosen because they are representative of widely used industrial solvents and they have significantly different Henry`s law constants relative to each other (the MEK value < Xylene value < Hexane value). Henry`s law constants quantify the partitioning of a chemical between the air and water-biofilm phase and therefore can be used to correlate the effect of chemical properties on biofilter removal capacities. This paper also introduces a new model for the biofiltration process.

OSTI ID:
395329
Report Number(s):
CONF-9505206-; TRN: IM9648%%452
Resource Relation:
Conference: 50. Purdue industrial waste conference, W. Lafayette, IN (United States), 8-10 May 1995; Other Information: PBD: 1996; Related Information: Is Part Of Proceedings of the 50. industrial waste conference; Wukasch, R.F. [ed.]; PB: 861 p.
Country of Publication:
United States
Language:
English