Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Rational design of organic superconductors through the use of the large, discrete molecular anions M(CF{sub 3}){sub 4}{sup -}(M = Cu, Ag, Au) and SO{sub 3}CF{sub 2}CH{sub 2}SF{sub 5}{sup -}

Conference ·
OSTI ID:394367
A new approach to synthesis of organic superconductors has recently been pioneered which involves the use of large discrete molecular anions as the charge-compensating entities in these charge transfer salts. The organic electron-donor molecule bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF or ET) has been electrocrystallized with the novel organometallic M(CF{sub 3}){sub 4}{sup -} (M=Cu, Ag, Au) anions in a variety of 1,1,2-trihaloethane solvents. Over 20 organic superconductors have been synthesized which can be described by (ET){sub 2}M(CF{sub 3}){sub 4}(1,1,2- trihaloethane). These solvated salts are shown to have highly anisotropic physical properties which can be tuned via modifications of each of their three molecular components: ET electron donor molecule, M(CF{sub 3}){sub 4}{sup -} anion, and neutral 1,1,2- trihaloethane solvent molecule. Superconductivity has also been observed in an ET salt containing the discrete SF{sub 5}CH{sub 2}CF{sub 2}SO{sub 3}{sup -} anion with onset temperature near 5.2 K.
Research Organization:
Argonne National Lab., IL (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States); Deutsche Forschungsgemeinschaft, Bonn (Germany); Portland State Univ., OR (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
394367
Report Number(s):
ANL/CHM/CP--90773; CONF-960784--7; ON: DE96014868
Country of Publication:
United States
Language:
English