skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fish passage mitigation of impacts from hydroelectric power projects in the United States

Abstract

Obstruction of fish movements by dams continues to be the major environmental issue facing the hydropower industry in the US. Dams block upstream migrations, which can cut off adult fish form their historical spawning grounds and severely curtail reproduction. Conversely, downstream-migrating fish may be entrained into the turbine intake flow and suffer turbine-passage injury or mortality. Hydroelectric projects can interfere with the migrations of a wide variety of fish. Maintenance, restoration or enhancement of populations of these species may require the construction of facilities to allow for upstream and downstream fish passage. The Federal Energy Regulatory Commission (FERC), by law, must give fish and wildlife resources equal consideration with power production in its licensing decisions, must be satisfied that a project is consistent with comprehensive plans for a waterway (including fisheries management plans), and must consider all federal and state resource agency terms and conditions for the protection of fish and wildlife. As a consequence, FERC often requires fish passage mitigation measures as a condition of the hydropower license when such measures are deemed necessary for the protection of fish. Much of the recent research and development efforts of the US Department of Energy`s Hydropower Program have focused on themore » mitigation of impacts to upstream and downstream fish passage. This paper descries three components of that effort: (1) a survey of environmental mitigation measures at hydropower sites across the country; (2) a critical review of the effectiveness of fish passage mitigation measures at 16 case study sites; and (3) ongoing efforts to develop new turbine designs that minimize turbine-passage mortality.« less

Authors:
 [1]
  1. Oak Ridge National Lab., TN (United States). Environmental Sciences Div.
Publication Date:
Research Org.:
Oak Ridge National Lab., TN (United States)
Sponsoring Org.:
USDOE, Washington, DC (United States)
OSTI Identifier:
392793
Report Number(s):
CONF-9609257-1
ON: DE97000152; TRN: 97:000048
DOE Contract Number:
AC05-96OR22464
Resource Type:
Conference
Resource Relation:
Conference: International conference on fish migration and fish bypass channels, Vienna (Austria), 24-26 Sep 1996; Other Information: PBD: [1996]
Country of Publication:
United States
Language:
English
Subject:
13 HYDRO ENERGY; HYDROELECTRIC POWER PLANTS; ENVIRONMENTAL IMPACTS; FISHES; MIGRATION; FISH PASSAGE FACILITIES; HABITAT; FISHERIES; RESOURCE MANAGEMENT

Citation Formats

Cada, G.F.. Fish passage mitigation of impacts from hydroelectric power projects in the United States. United States: N. p., 1996. Web.
Cada, G.F.. Fish passage mitigation of impacts from hydroelectric power projects in the United States. United States.
Cada, G.F.. Tue . "Fish passage mitigation of impacts from hydroelectric power projects in the United States". United States. doi:. https://www.osti.gov/servlets/purl/392793.
@article{osti_392793,
title = {Fish passage mitigation of impacts from hydroelectric power projects in the United States},
author = {Cada, G.F.},
abstractNote = {Obstruction of fish movements by dams continues to be the major environmental issue facing the hydropower industry in the US. Dams block upstream migrations, which can cut off adult fish form their historical spawning grounds and severely curtail reproduction. Conversely, downstream-migrating fish may be entrained into the turbine intake flow and suffer turbine-passage injury or mortality. Hydroelectric projects can interfere with the migrations of a wide variety of fish. Maintenance, restoration or enhancement of populations of these species may require the construction of facilities to allow for upstream and downstream fish passage. The Federal Energy Regulatory Commission (FERC), by law, must give fish and wildlife resources equal consideration with power production in its licensing decisions, must be satisfied that a project is consistent with comprehensive plans for a waterway (including fisheries management plans), and must consider all federal and state resource agency terms and conditions for the protection of fish and wildlife. As a consequence, FERC often requires fish passage mitigation measures as a condition of the hydropower license when such measures are deemed necessary for the protection of fish. Much of the recent research and development efforts of the US Department of Energy`s Hydropower Program have focused on the mitigation of impacts to upstream and downstream fish passage. This paper descries three components of that effort: (1) a survey of environmental mitigation measures at hydropower sites across the country; (2) a critical review of the effectiveness of fish passage mitigation measures at 16 case study sites; and (3) ongoing efforts to develop new turbine designs that minimize turbine-passage mortality.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Oct 01 00:00:00 EDT 1996},
month = {Tue Oct 01 00:00:00 EDT 1996}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The first report of the Environmental Study examines current mitigation practices for water quality [specifically, dissolved oxygen (DO)], instream flows, and upstream and downstream fish passage. This review describes information on the types and frequency of mitigations methods in use, their environmental benefits and effectiveness, and their environmental benefits and effectiveness, and their costs. Information on mitigation practices was obtained directly from three sources: (a) existing records from the Federal Energy Regulatory Commission (FERC), (b) new information provided by nonfederal hydropower developers, and (c) new information obtained from the state and federal natural resource agencies involved in hydropower regulation. Informationmore » on specific mitigation practices was obtained from 280 projects, more than 40% of all the projects licensed during the 1980s that were identified a priori as having the mitigation requirements of interest. Of all projects receiving FERC licenses or license exemptions since 1980, instream flow requirements are the most common mitigation requirement, followed by requirements for downstream fish passage, DO protection, and upstream fish passage facilities. The proportion of projects with environmental mitigation requirements has increased significantly during the past decade.« less
  • The Department of Energy, through its hydropower program, is studying environmental mitigation practices at hydroelectric projects. The study of environmental mitigation is intended to provide greater understanding of environmental problems and solutions that are associated with conventional hydroelectric projects. This volume examines upstream and downstream fish passage/protection technologies and the associated practices, benefits, and costs. Fish passage/protection mitigation technologies are investigated by three methods: (a) national, regional (Federal Energy Regulatory Commission regions), and temporal frequencies of fish passage/protection mitigation are examined at 1,825 operating and conventional (excludes pumped storage) Federal Energy Regulatory Commission (FERC) regulated hydroelectric sites in the Unitedmore » States; (b) general fish passage/protection mitigation costs are discussed for 50 FERC regulated hydroelectric projects; and (c) 16 case studies are used to examine specific fish passage/protection mitigation practices, benefits, and costs.« less
  • This study examines envirorunental mitigation practices that provide upstream and downstream fish passage and protection at hydroelectric projects. The study includes a survey of fish passage and protection mitigation practices at 1,825 hydroelectric plants regulated by the Federal Energy Regulatory Commission (FERC) to determine frequencies of occurrence, temporal trends, and regional practices based on FERC regions. The study also describes, in general terms, the fish passage/protection mitigation costs at 50 non-Federal hydroelectric projects. Sixteen case studies are used to examine in detail the benefits and costs of fish passage and protection. The 16 case studies include 15 FERC licensed ormore » exempted hydroelectric projects and one Federally-owned and-operated hydroelectric project. The 16 hydroelectric projects are located in 12 states and range in capacity from 400 kilowatts to 840 megawatts. The fish passage and protection mitigation methods at the case studies include fish ladders and lifts, an Eicher screen, spill flows, airburst-cleaned inclined and cylindrical wedgewire screens, vertical barrier screens, and submerged traveling screens. The costs, benefits, monitoring methods, and operating characteristics of these and other mitigation methods used at the 16 case studies are examined.« less
  • Current environmental mitigation practices at nonfederal hydropower projects were analyzed. Information about instream flows, dissolved oxygen (DO) mitigation, and upstream and downstream fish passage facilities was obtained from project operators, regulatory and resource agencies, and literature reviews. Information provided by the operators includes the specific mitigation requirements imposed on each project, specific objectives or purposes of mitigation, mitigation measures chosen to meet the requirement, the kinds of post-project monitoring conducted, and the costs of mitigation. Costs are examined for each of the four mitigation methods, segmented by capital, study, operations and maintenance, and annual reporting costs. Major findings of themore » study include: the dominant role of the Instream Flow Incremental Methodology, in conjunction with professional judgment by agency biologists, to set instream flow requirements; reliance on spill flows for DO enhancement; and the widespread use of angled bar racks for downstream fish protection. All of these measures can have high costs and, with few exceptions, there are few data available from nonfederal hydropower projects with which to judge their effectiveness. 100 refs.« less
  • Research into the environmental effects of hydroelectric power production in the United States has focused increasingly on resident and migratory fish populations. Hydropower dams and reservoirs can block fish movements in both upstream and downstream directions. These movements are essential for important stocks of anadromous and catadromous fish. In addition, some strictly freshwater fish may move long distances within a river during their life cycle.A dam can pose an impassable barrier for fish trying to move upstream unless mitigation measures in the form of ladders or lifts are provided. Fish moving downstream to the sea may become disoriented when theymore » encounter static water within a reservoir. Both resident and migratory fish may be injured or killed by passing through the turbine or over the spillway. In the United States, a variety of organizations conduct applied research and development of measures to (1) enhance fish passage, (2) reduce the numbers of fish that are drawn into the turbine intakes, and (3) reduce the injury and mortality rates of fish that pass through the turbines. Examples of these efforts from a variety of river systems and hydroelectric power plants are described.« less