Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

An investigation of the effects of simulated acid rain and elevated ozone on the physiology of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings and mature trees

Thesis/Dissertation ·
OSTI ID:39157

This study investigated the combined effects of simulated acid rain and ozone on foliar water relations, carbon and nitrogen contents, gas exchange, and respiration of ponderosa pine seedlings and mature trees grown in the field at the USDA Forest Service Tree Improvement Center in Chico, California. Acid rain levels (pH 5.1 and 3) were applied weekly on foliage only, from January to April, 1992. Plants were exposed to ozone levels (ambient and twice ambient) during the day only, from August to December, 1990, and from September to November, 1992. Results suggested that elevated ozone, particularly in combination with strong acid, caused osmotic adjustment that may benefit plants during drought. The observed effects of pollutants are similar to the reported effects of drought on plant water relations. Elevated ozone decreased foliar nitrogen content and thus increased the C:N ratio, particularly in seedlings. Stomatal conductance was not affected by pollutants but net photosynthesis was decreased by elevated ozone, especially in mature trees. The greater sensitivity of net photosynthesis of mature trees to elevated ozone was contrary to all other plant characteristics investigated. Elevated ozone increased seedling respiration. Under controlled, temperature, light, and vapor pressure deficit conditions, net photosynthesis responded positively to increases in plant age, light intensity, and rain pH, but negatively to increases in tissue age, heat, and ozone concentration. Overall results indicated that acid rain and elevated ozone declined the carbon pool of ponderosa pine due to increased respiration and decreased net photosynthesis. Pollutant effects were more profound in mid-summer when ozone concentrations were highest. On many occasions the effects of acid rain and ozone levels interacted. Seedlings were more sensitive to pollutants than mature trees.

Research Organization:
California Univ., Berkeley, CA (United States)
OSTI ID:
39157
Country of Publication:
United States
Language:
English