skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flow structure of the solids in a 3-D gas-liquid-solid fluidized bed

Journal Article · · AIChE Journal
; ; ;  [1]
  1. Ecole Polytechnique, Montreal, Quebec (Canada). Dept. of Chemical Engineering

Gas-liquid-solid fluidized systems have made inroads into a variety of industrial applications from heavy oil, petroleum resid, and synthetic crude processing to fermentation and aerobic biological wastewater treatment. Local and macroscopic solids flow structure and kinematics in a 3-D gas-liquid-solid fluidized bed were studied using a noninvasive radioactive-particle tracking (RPT) technique. Based on the multisite detection of {gamma} radiations emitted from a single radiolabeled tracer particle freely moving in the fluidized bed, RPT permitted the authors to obtain fast sampling of 3-D trajectories of the tracer, whose physical properties were similar to those of the solids inventory. These trajectories showed the detailed motion sequences of the solid particles as entrained in the bubble wakes, fluctuating randomly or sinking deterministically in the liquid-solid emulsion. Based on measurements done in the vortical-spiral flow regime, the dynamic solids flow structure inside a three-phase fluidized bed can be viewed as a three-zone core-annulus-annulus structure: a central fast-bubble flow region with the particles swirling upward; a vortical flow region around the velocity inversion point with the particles momentarily captured in emulsion vortices; and a relatively bubble-free descending flow region where the particles spiral down between the velocity inversion point and vessel walls. The flow structure of dense fluidized beds are similar to the flow structure of liquid and/or solid in lean fluidized beds. Measured distributions of local ensemble-averaged particle velocities and turbulence intensities were consistent with the existence of a toroidal recirculatory solids flow pattern in the bed. Measured mean circumferential ensemble-averaged radial velocity was essentially zero throughout most of the bed. The solids flow turbulence field was nonisotropic, as radial turbulence intensities were generally lower than longitudinal turbulence intensities.

OSTI ID:
377998
Journal Information:
AIChE Journal, Vol. 42, Issue 9; Other Information: PBD: Sep 1996
Country of Publication:
United States
Language:
English

Similar Records

Flow structure of the solids in a three-dimensional liquid fluidized bed
Journal Article · Sat Nov 01 00:00:00 EST 1997 · Industrial and Engineering Chemistry Research · OSTI ID:377998

Flow structure in a three-dimensional bubble column and three-phase fluidized bed
Journal Article · Fri Jul 01 00:00:00 EDT 1994 · AIChE Journal (American Institute of Chemical Engineers); (United States) · OSTI ID:377998

Solid-liquid mass transfer in multiphase fluidized beds
Miscellaneous · Sun Jan 01 00:00:00 EST 1989 · OSTI ID:377998