skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular dynamics simulation of elevated temperature interfacial behavior between silica glass and a model crystal

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.471931· OSTI ID:371335
;  [1]
  1. Department of Ceramics, Interfacial Molecular Science Laboratory, Rutgers University, Piscataway, New Jersey 08855 (United States)

Elevated temperature atomistic behavior was investigated using classical molecular dynamics simulations of solid state interfaces. Initially, observations on a Lennard-Jones (LJ) crystal surface interfaced with an ideal vacuum were made. Assignment of temperatures associated with specific amounts of crystal surface disorder was possible. A temperature was observed at and above which disorder propagated through all planes of mobile atoms, making it possible to establish an approximate transition temperature for surface nucleated melting of the LJ crystal. Similar high temperature simulations were then performed on silica glass/LJ crystal interfaces at two system stress levels. No significant dependence of interface behavior on the stress states which were studied was observed. The presence of the glass surface resulted in a depression of the temperature needed for the surface most planes of crystal atoms to roughen. This allowed LJ atoms to sample and occupy sites in the glass surface. Additional data presented shows this behavior was at least partly a function of the open structure inherent in glassy oxide surfaces. {copyright} {ital 1996 American Institute of Physics.}

DOE Contract Number:
FG05-88ER45368
OSTI ID:
371335
Journal Information:
Journal of Chemical Physics, Vol. 105, Issue 2; Other Information: PBD: Jul 1996
Country of Publication:
United States
Language:
English

Similar Records

Molecular dynamics simulation of the approach and withdrawal of a model crystalline metal to a silica glass surface
Journal Article · Thu Dec 01 00:00:00 EST 1994 · Journal of Chemical Physics; (United States) · OSTI ID:371335

Glass transition
Journal Article · Mon Jan 01 00:00:00 EST 1990 · International Journal of Supercomputer Applications; (USA) · OSTI ID:371335

Structure-energy correlation for grain boundaries in F. C. C. metals; I. boundaries on the (111) and (100) planes
Journal Article · Sat Jul 01 00:00:00 EDT 1989 · Acta Metallurgica; (USA) · OSTI ID:371335