skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Application of a lux-based bioassay to assess soil toxicity

Conference ·
OSTI ID:367542
 [1];  [1]; ; ;  [2]
  1. Macaulay Land Use Research Inst., Aberdeen (United Kingdom)
  2. Univ. of Aberdeen (United Kingdom)

The expression of prokaryotic bioluminescence is linked with cell metabolism and accordingly bioassays have been developed using naturally bioluminescent bacteria to assess ecotoxicity. Advances in biotechnology have allowed the isolation of the lux genes (responsible for bioluminescence) from marine organisms and their insertion into terrestrial bacteria. This has enabled the use of ecologically relevant bacteria to assess toxicity by measuring bioluminescence response in the presence of toxins. The lux genes were inserted into Pseudomonas fluorescens and Rhizobium leguminosarum biovar trifolii as a multi-copy plasmid and also integrated into the chromosome. It was found that in aqueous solutions the plasmid constructs were more sensitive than the chromosomal constructs to a range of toxins. The order of toxicity for Ps. fluorescens was Zn = Cu > Cd > Ni > Cr > DCP and for R. trifolii Zn > Cu > Cd > DCP > Cr. The lux based bioassays were more reproducible and sensitive than ATP and dehydrogenase assays and offered greater sensitivity than Photobacterium phosphoreum assays to assess toxicity of inorganic pollutants. Extracts from 4 soil types were spiked with a range of toxins and when EC{sub 50} values were determined it was shown that toxicity was related to soil characteristics. This enabled the assay to be used to assess the Lee Valley soil experiment which represents an important international study of the effect of the application of contaminated sewage to land. High metal application rates had been shown to have serious implications for soil ecology. Chemical analysis, carried out 26 years after sewage addition confirmed that soil extracts still had increased metal concentrations. The lux-based bioassays, which proved to be rapid, reproducible and sensitive confirmed that the metals were still biologically available and hence toxic.

OSTI ID:
367542
Report Number(s):
CONF-9511137-; ISBN 1-880611-03-1; TRN: IM9640%%288
Resource Relation:
Conference: 2. Society of Environmental Toxicology and Chemistry (SETAC) world conference, Vancouver (Canada), 5-9 Nov 1995; Other Information: PBD: 1995; Related Information: Is Part Of Second SETAC world congress (16. annual meeting): Abstract book. Global environmental protection: Science, politics, and common sense; PB: 378 p.
Country of Publication:
United States
Language:
English