Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Low emission characteristics of radiant burner

Conference ·
OSTI ID:357755
; ; ; ;  [1]
  1. Clark Atlanta Univ., GA (United States). Dept. of Engineering
A commercial infrared burner is characterized in terms of its radiant efficiency and its emissions of CO, CO{sub 2}, O{sub 2}, unburned hydrocarbon, and NOx in the exhaust gases. It has been found that when methane is used as the fuel the burner reached its maximum radiation efficiency of 31.4% at the equivalence ratio {Phi} = 1. CO{sub 2} also reached its maximum value of 10.7% at {Phi} = 1. In the fuel-lean region, the concentrations of CO and unburned total hydrocarbon (UHC) were kept in a couple of hundred ppm ranges. In fuel-rich region, the CO and UHC concentrations quickly jumped to thousands of ppm or more as {Phi} increased. The NOx formation was strongly dependent on the equivalence ratio at which the burner was operated. The NOx reached its maximum of 8 ppm at {Phi} = 1, which was significantly lower than those from traditional gas burners. The NOx decreased significantly as the burner was operated at conditions away from stoichiometric. Tests were also conducted with fuel mixtures of methane and propane, which represented peak-saving gas in the industry. To simulate possible flash back, fuel mixture of methane and hydrogen was tested. Results from these tests provided insight into the effects of gas composition variations upon the IR burner performance characteristics. It has been found that the addition of propane in the fuel produced a higher combustion temperature and higher levels of NOx emission. It was also revealed by the test results that the addition of hydrogen to the methane fuel did not significantly affect the production of NOx, CO{sub 2} and CO.
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
FG22-94MT94011
OSTI ID:
357755
Report Number(s):
CONF-980213--
Country of Publication:
United States
Language:
English