skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of fuels for second-generation PFBC

Book ·
OSTI ID:355819
;  [1]
  1. Aabo Akademi Univ., Turku (Finland). Dept. of Chemical Engineering

In second-generation PFBC technology a solid fuel is partly converted in a devolatilization step (in a carbonizer) to produce a char and a pressurized fuel gas, followed by PFB combustion of the char. The fuel gas is led to the combustion chamber of a gas turbine after it is mixed with the PFBC off-gas, thus increasing the temperature at the inlet of the expansion turbine. Clearly, the optimization of the carbonizer design and operation is essential to the process. Detailed information on the behavior of solid fuels under pressurized conditions is, however, largely limited to steam and/or carbon dioxide gasification reactivities, obtained at a different combination of process parameters, such as temperature, pressure, heating rate, particle size and gas atmosphere. In the present work, the effect of temperature, pressure and heating rates on the yields of volatiles and char residue reactivity has been measured for a set of fuels ranging from bituminous coal to wood. Laboratory conditions were typical for the carbonizer and combustion reactors in a second-generation PFBC system. A pressurized thermogravimetric reactor (PTGR) operated at heating rates of around 250 K/s and a pressurized grid heater (PGH) operated at heating rates up to 3,000 K/s were used to analyze fuel devolatilization and char reactivity against carbon dioxide or steam at temperatures between 800 and 1,100 C, and 1, 10 or 25 bar total pressure. For comparison, a few experiments were repeated without a separate devolatilization step. The behavior of the various fuels were compared and related to proximate and ultimate fuel analysis. Several empirical, engineering equations are given. A simple 2-parameter model which separates intrinsic surface reactivity and physical, structure effects, very well describes the time-conversion data of the char. It was found that the fuel O/C molar ratio is a very good index for char reactivity, when the char O/C ratio itself is unknown.

OSTI ID:
355819
Report Number(s):
CONF-9705116-; ISBN 0-7918-1557-9; TRN: IM9931%%340
Resource Relation:
Conference: 14. international conference on fluidized bed combustion, Vancouver (Canada), 11-16 May 1997; Other Information: PBD: 1997; Related Information: Is Part Of Proceedings of the 14. international conference on fluidized bed combustion: Volume 1; Preto, F.D.S. [ed.] [Canada Centre for Mineral and Energy Technology, Ottawa, Ontario (Canada). Energy Technology Centre]; PB: 666 p.
Country of Publication:
United States
Language:
English