Calibration of a computer-controlled precision wavemeter for use with pulsed lasers
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081 (United States)
The design of a pulsed wavemeter to monitor the high-precision tuning of pulsed (as well as cw) laser sources is presented. This device is developed from a combination of silver-coated Fabry{endash}Perot etalons with various plate spacings. These etalons provide stepwise refinement of the wavelength to be measured. The wavemeter is controlled by a computer through a CAMAC interface, which measures the absolute wavelength in the visible with an accuracy of 2 parts in 10{sup 8}. The time required for data acquisition and computation to measure the refined wavelength with a single 2-MHz CPU is less than 100 ms. We describe the calibration of the instrument over the wavelength range 400{endash}850 nm. We obtain the required calibration lines by locking lasers on hyperfine transitions of iodine, uranium, rubidium, and cesium. Methods to reduce the number of calibration lines required for calibration of the system are described. The expected wavelength-dependent phase shift of the silver coatings is compared with that measured for the etalon flowing calibration. The differences are larger than expected because of either optical aberations or the use of centroids to measure the fringe position. {copyright} 1999 Optical Society of America
- OSTI ID:
- 351837
- Journal Information:
- Applied Optics, Journal Name: Applied Optics Journal Issue: 12 Vol. 38; ISSN APOPAI; ISSN 0003-6935
- Country of Publication:
- United States
- Language:
- English
Similar Records
Fizeau wavemeter
Precision broadband wavemeter for millimeter and submillimeter range