skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of strain rate and temperature on the susceptibility of 304 austenitic stainless steel to hydrogen embrittlement

Conference ·
OSTI ID:350089
 [1]
  1. Petroleum Research Center, Tripoli (Libyan Arab Jamahiriya)

Cathodic charging of notched 304 austenitic stainless steel specimens was carried out in aqueous solution of 1N H{sub 2}SO{sub 4}, containing 250 mg/l NaAsO{sub 2}, at room temperature and 70 {+-} 2 C while undergoing tensile straining over a wide range of crosshead speed (833 {micro}m/s, 83 {micro}m/s, 8.3 {micro}m/s, 833 nm/s, 83 nm/s and 9.8 nm/s). Test at room temperature 22 {+-} 2 C resulted in a marked reduction in the elongation to fracture ratio (Esol/Eair) by reducing the crosshead speed. However, little reduction was observed in the stress to fracture ratio ({sigma}sol/{sigma}air). Quasi cleavage and intergranular fractures where the predominant failure modes when tests were carried out at low crosshead speeds, The extent of these modes of fracture was observed to increase by reducing the crosshead speed. Cathodic charging of 304 austenitic stainless steel at 70 {+-} 2 C caused less reduction in the elongation to fracture ratio compared to the tests carried out at room temperature. Consistent with the room temperature test results, the reduction in the elongation to fracture ratio was found to increase with reduced crosshead speed. However, restoration in the elongation to fracture ratio was exhibited by 304 austenitic stainless steel specimens tested at the lowest crosshead speed (9.8 nm/s). These results are in good agreement with the finding that hydrogen embrittlement is temperature and strain dependent. Quasi cleavage fracture associated with the plastic deformation was the predominant failure mode exhibited by 304 austenitic stainless steel specimens tested at 70 {+-} 2 C at low crosshead speeds.

OSTI ID:
350089
Report Number(s):
CONF-980316-; TRN: IM9925%%437
Resource Relation:
Conference: Corrosion `98, San Diego, CA (United States), 22-27 Mar 1998; Other Information: PBD: 1998; Related Information: Is Part Of Corrosion `98: 53. annual conference and exposition, proceedings; PB: [6600] p.
Country of Publication:
United States
Language:
English