skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Westinghouse hot gas filter system development

Abstract

Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements for these applications. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: 4,246 hours of testing that has now been completed at the Foster Wheeler 10 MW PCFB facility located in Karhula, Finland; operation of the W-APF in conjunction with the Foster Wheeler Advanced HIPPS Test Program being conducted at their Livingston, New Jersey site; approximately 2,100 hours of operation of the W-APF at the SCS/PSDF site on the MWK transport reactor test loop; the design, installation and startup status of the W-APF unit supplied to the 95 MW Pinon Pine IGCC Clean Coal Demonstration, Reno, Nevada; and the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation. Results reported include operating history, operatingmore » characteristics and filter performance. Schedules and objectives for future testing are summarized. The status of the 200 MWe PCFB Clean Coal Demonstration Project, City of Lakeland Florida and 75 MW(e) Minnesota Agriculture Biomass Power Project are summarized.« less

Authors:
; ; ; ;  [1]
  1. Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center
Publication Date:
OSTI Identifier:
349195
Report Number(s):
CONF-980985-
ISBN 1-890977-15-2; TRN: IM9924%%195
DOE Contract Number:
AC21-94MC31147
Resource Type:
Conference
Resource Relation:
Conference: 15. annual international Pittsburgh coal conference, Pittsburgh, PA (United States), 14-18 Sep 1998; Other Information: PBD: 1998; Related Information: Is Part Of Fifteenth annual international Pittsburgh coal conference: Proceedings; PB: [1500] p.
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; COMBINED-CYCLE POWER PLANTS; HOT GAS CLEANUP; FUEL GAS; DEASHING; FILTERS; DESIGN; PERFORMANCE TESTING; FIELD TESTS

Citation Formats

Lippert, T.E., Bruck, G.J., Sanjana, Z.N., Alvin, M.A., and Newby, R.A. Westinghouse hot gas filter system development. United States: N. p., 1998. Web.
Lippert, T.E., Bruck, G.J., Sanjana, Z.N., Alvin, M.A., & Newby, R.A. Westinghouse hot gas filter system development. United States.
Lippert, T.E., Bruck, G.J., Sanjana, Z.N., Alvin, M.A., and Newby, R.A. 1998. "Westinghouse hot gas filter system development". United States. doi:.
@article{osti_349195,
title = {Westinghouse hot gas filter system development},
author = {Lippert, T.E. and Bruck, G.J. and Sanjana, Z.N. and Alvin, M.A. and Newby, R.A.},
abstractNote = {Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements for these applications. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: 4,246 hours of testing that has now been completed at the Foster Wheeler 10 MW PCFB facility located in Karhula, Finland; operation of the W-APF in conjunction with the Foster Wheeler Advanced HIPPS Test Program being conducted at their Livingston, New Jersey site; approximately 2,100 hours of operation of the W-APF at the SCS/PSDF site on the MWK transport reactor test loop; the design, installation and startup status of the W-APF unit supplied to the 95 MW Pinon Pine IGCC Clean Coal Demonstration, Reno, Nevada; and the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation. Results reported include operating history, operating characteristics and filter performance. Schedules and objectives for future testing are summarized. The status of the 200 MWe PCFB Clean Coal Demonstration Project, City of Lakeland Florida and 75 MW(e) Minnesota Agriculture Biomass Power Project are summarized.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1998,
month =
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • A novel Standleg Moving Granular Bed Filter (SMGBF), having inherent advantages over the current state-of-the-art moving granular bed filter technology, has been developed at Westinghouse for high-temperature and high-pressure applications at operating conditions of PFBC, IGCC, and DCFT. The technology is potentially competitive with ceramic barrier filters and its development program is complementary to the existing Westinghouse development program in ceramic barrier filters. The technology details and the experimental results from large-scale test facilities are reported. Its potential applications in other areas are also discussed. Westinghouse`s SMGBF technology is a simple, compact, and reliable design. The SMGBF, illustrated in amore » figure, makes use of a short straight standleg to allow intimate contact between the flowing gas stream and the moving granular bed. Gas is then allowed to flow out over the surface of the bed formed naturally below the standleg. Simultaneously, the particulates in the gas stream are trapped and retained by the moving granular bed. With a standleg height of 0.91m (the design for the standard module), the particulate collection efficiency has been found experimentally to be up to more than 99.9%. The simple design and known scaleup criteria for a moving bed in a vertical standleg minimize uncertainty about scaleup to larger sizes and elevated temperatures and pressures.« less
  • Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, there are concerns for their reliability and operability. An alternative hot gas filtration technology is the moving granular bed filter. These systems are at a lower state of development than ceramic barrier filters, and their effectiveness as filters is still in question. Their apparent attributes,more » result from their much less severe mechanical design and materials constraints, and the potential for more reliable, failure-free particle removal operation. The standleg moving granular-bed filter (SMGBF) system, is a compact unit that uses cocurrent gas-pellet contacting in an arrangement that greatly simplifies and enhances the distribution of dirty, process gas to the moving bed and allows effective disengagement of clean gas from the moving bed. This paper describes the equipment and process test results.« less
  • Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.
  • Integrated Gasification Combined Cycles (IGCC) and Pressurized Circulating Fluidized Bed Cycles (PCFB) are being developed and demonstrated for commercial power generation applications. Hot gas particulate filters (HGPF) are key components for the successful implementation of IGCC and PCFB in power generation gas turbine cycles. The objective is to develop and qualify through analysis and testing a practical HGPF system that meets the performance and operational requirements of PCFB and IGCC systems. This paper reports on the status of Westinghouse`s HGPF commercialization programs including: A quick summary of past gasification based HGPF test programs; A summary of the integrated HGPF operationmore » at the American Electric Power, Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Project with approximately 6000 hours of HGPF testing completed; A summary of approximately 3200 hours of HGPF testing at the Foster Wheeler (FW) 10 MW{sub e} facility located in Karhula, Finland; A summary of over 700 hours of HGPF operation at the FW 2 MW{sub e} topping PCFB facility located in Livingston, New Jersey; A summary of the design of the HGPFs for the DOE/Southern Company Services, Power System Development Facility (PSDF) located in Wilsonville, Alabama; A summary of the design of the commercial-scale HGPF system for the Sierra Pacific, Pinon Pine IGCC Project; A review of completed testing and a summary of planned testing of Westinghouse HGPFs in Biomass IGCC applications; and A brief summary of the HGPF systems for the City of Lakeland, McIntosh Unit 4 PCFB Demonstration Project.« less
  • Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: W-APF integrated operation withmore » the American Electric Power, 70 MW PFBC clean coal facility--approximately 6000 test hours completed; approximately 2500 hours of testing at the Hans Ahlstrom 10 MW PCFB facility located in Karhula, Finland; over 700 hours of operation at the Foster Wheeler 2 MW 2nd generation PFBC facility located in Livingston, New Jersey; status of Westinghouse HGF supply for the DOE Southern Company Services Power System Development Facility (PSDF) located in Wilsonville, Alabama; the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation; and the status of the design and supply of the HGF unit for the 95 MW Pinon Pine IGCC Clean Coal Demonstration.« less