skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface structures of Al-Pd-Mn and Al-Cu-Fe icosahedral quasicrystals

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/348927· OSTI ID:348927
 [1]
  1. Iowa State Univ., Ames, IA (United States)

In this dissertation, the author reports on the surface structure of i-Al-Pd-Mn twofold, threefold, fivefold and i-Al-Cu-Fe fivefold surfaces. The LEED studies indicate the existence of two distinct stages in the regrowth of all four surfaces after Ar+ sputtering. In the first stage, upon annealing at relatively low temperature: 500K--800K (depending on different surfaces), a cubic phase appears. The cubic LEED patterns transform irreversibly to unreconstructed quasicrystalline patterns upon annealing to higher temperatures, indicating that the cubic overlayers are metastable. Based upon the data for three chemically-identical, but symmetrically-inequivalent surfaces, a model is developed for the relation between the cubic overlayers and the quasicrystalline substrate. The model is based upon the related symmetries of cubic close-packed and icosahedral-packed materials. These results may be general among Al-rich, icosahedral materials. STM study of Al-Pd-Mn fivefold surface shows that terrace-step-kink structures start to form on the surface after annealing above 700K. Large, atomic ally-flat terraces were formed after annealing at 900K. Fine structures with fivefold icosahedral symmetry were found on those terraces. Data analysis and comparison of the STM images and structure model of icosahedral Al-Pd-Mn suggest that the fine structures in the STM images may be the pseudo Mackay (PMI) clusters which are the structure units of the structure model. Based upon his results, he can conclude that quasicrystalline structures are the stable structures of quasicrystal surfaces. In other words, quasicrystalline structures extend from the bulk to the surface. As a result of the effort reported in this dissertation, he believes that he has increased his understanding of the surface structure of icosahedral quasicrystals to a new level.

Research Organization:
Ames Lab., Ames, IA (United States)
Sponsoring Organization:
USDOE Office of Energy Research, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-82
OSTI ID:
348927
Report Number(s):
IS-T-1853; ON: DE99002522; TRN: AHC29920%%78
Resource Relation:
Other Information: DN: Thesis submitted to Iowa State Univ., Ames, IA (US); TH: Thesis (Ph.D.); PBD: 12 Feb 1999
Country of Publication:
United States
Language:
English