Automation and integration of polymerase chain reaction with capillary electrophoresis for high throughput genotyping and disease diagnosis
Genotyping is to detect specific loci in the human genome. These loci provide important information for forensic testing, construction of genetic linkage maps, gene related disease diagnosis and pharmacogenetic research. Genotyping is becoming more and more popular after these loci can be easily amplified by polymerase chain reaction (PCR). Capillary electrophoresis has its unique advantages for DNA analysis due to its fast heat dissipation and ease of automation. Four projects are described in which genotyping is performed by capillary electrophoresis emphasizing different aspects. First, the author demonstrates a principle to determine the genotype based on capillary electrophoresis system. VNTR polymorphism in the human D1S80 locus was studied. Second, the separation of four short tandem repeat (STR) loci vWF, THO1, TPOX and CSF1PO (CTTv) by using poly(ethylene oxide) (PEO) was studied in achieving high resolution and preventing rehybridization of the DNA fragments. Separation under denaturing, non-denaturing conditions and at elevated temperature was discussed. Third, a 250 {micro}m i.d., 365 {micro}m o.d. fused silica capillary was used as the microreactor for PCR. Fourth, direct PCR from blood was studied to simplify the sample preparation for genotyping to minimum.
- Research Organization:
- Ames Lab., IA (United States)
- Sponsoring Organization:
- USDOE Office of Energy Research, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-82
- OSTI ID:
- 348906
- Report Number(s):
- IS-T--1859; ON: DE99002518
- Country of Publication:
- United States
- Language:
- English
Similar Records
A new sieving matrix for DNA sequencing, genotyping and mutation detection and high-throughput genotyping with a 96-capillary array system
DNA typing by capillary electrophoresis