skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Parametric analysis of cyclic phase change and energy storage in solar heat receivers

Conference ·
OSTI ID:347767
; ;  [1];  [2]
  1. Howard Univ., Washington, DC (United States). School of Engineering
  2. NASA Lewis Research Center, Cleveland, OH (United States)

A parametric study on cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, has been performed. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center`s Ground Test Demonstration (GTD) project was developed. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF{sub 2} was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results in the two-phase regime. Results indicate that parametric changes in receiver gas inlet temperature and receiver heat input effects higher sensitivity to changes in receiver gas exit temperatures.

OSTI ID:
347767
Report Number(s):
CONF-970701-; TRN: IM9923%%305
Resource Relation:
Conference: 32. intersociety energy conversion engineering conference, Honolulu, HI (United States), 27 Jul - 2 Aug 1997; Other Information: PBD: [1997]; Related Information: Is Part Of Proceedings of the thirty-second intersociety energy conversion engineering conference. Volume 1: Aerospace power systems and technologies; PB: 787 p.
Country of Publication:
United States
Language:
English