Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Sulfur geochemistry of hydrothermal waters in Yellowstone National Park. 1: The origin of thiosulfate in hot spring waters

Journal Article · · Geochimica et Cosmochimica Acta
;  [1]; ; ;  [2]
  1. SUNY, Stony Brook, NY (United States). Dept. of Geosciences
  2. Geological Survey, Boulder, CO (United States). Water Resources Div.
Thiosulfate (S{sub 2}O{sub 3}{sup 2{minus}}), polythionate (S{sub x}O{sub 6}{sup 2{minus}}), dissolved sulfide (H{sub 2}S), and sulfate (SO{sub 4}{sup 2{minus}}) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 {micro}mol/L in neutral and alkaline chloride springs with low sulfate concentrations (Cl{sup {minus}}/SO{sub 4}{sup 2{minus}} > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl{sup {minus}}/SO{sub 4}{sup 2{minus}} < 10), thiosulfate concentrations were also typically lower than 2 {micro}mol/L. However, in some chloride springs enriched with sulfate (Cl{sup {minus}}/SO{sub 4}{sup 2{minus}} between 10 and 25), thiosulfate was found at concentrations ranging from 9 to 95 {micro}mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 {micro}mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.
OSTI ID:
343753
Journal Information:
Geochimica et Cosmochimica Acta, Journal Name: Geochimica et Cosmochimica Acta Journal Issue: 23-34 Vol. 62; ISSN GCACAK; ISSN 0016-7037
Country of Publication:
United States
Language:
English

Similar Records

A hydrochemical and isotopic study of thermal waters on Lesbos Island, Greece
Journal Article · Wed Mar 31 23:00:00 EST 1993 · Geothermics (International Journal of Geothermal Research and its Applications); (United States) · OSTI ID:6156802

Oxidation of thiosulfate to sulfate at glassy carbon electrodes
Journal Article · Tue Aug 01 00:00:00 EDT 1995 · Journal of the Electrochemical Society · OSTI ID:110121

A thiosulfate shunt in the sulfur cycle of marine sediments
Journal Article · Fri Jul 13 00:00:00 EDT 1990 · Science (Washington, D.C.); (USA) · OSTI ID:6369636