Sequential anaerobic-aerobic degradation of indigenous PCBs in a contaminated soil matrix
- Oak Ridge National Lab., TN (United States). Chemical Technology Div.
Many industrial locations, including the US Department of Energy`s, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges; however, a practicable remediation technology has not yet been demonstrated. A biological treatment technology is likely to consist of an anaerobic fermentation step in which PCB dechlorination takes place producing PCBs with fewer chlorines. These products are then more susceptible to aerobic mineralization. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River and Woods Pond have been used to obtain anaerobic dechlorination of PCBs in soil slurry reactors. The anaerobic dechlorination was followed by qualitative estimation of the effect of aerobic fermentation of the dechlorination products based on literature data. The sequential anaerobic-(simulated) aerobic treatment constituted an improvement compared anaerobic treatment alone.
- Research Organization:
- Oak Ridge National Lab., TN (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- AC05-84OR21400
- OSTI ID:
- 34365
- Report Number(s):
- CONF-941245--2; ON: DE95008678
- Country of Publication:
- United States
- Language:
- English
Similar Records
Reductive microbial dechlorination of indigenous polychlorinated biphenyls in soil using a sediment-free inoculum
Aerobic and anaerobic PCB biodegradation in the environment