Microhollow electrode discharge flat panel displays
- Physical Electronics Research Inst., Norfolk, VA (United States)
- Univ. of Missouri, Columbia, MO (United States). College of Engineering
Microhollow electrode discharges, discharges between thin metal foils with submillimeter gap and submillimeter holes in cathode and anode, show three distinct modes of operation: (a) at low currents the predischarge mode, a glow discharge between the outer faces of the hollow electrodes, (b) at higher current a phase with increased ionization due to ``pendulum`` electrons in the cathode hole, and (c) at even higher current an abnormal glow discharge between the edges of cathode and anode hole. A fourth discharge mode, the so-called partial discharge seems to occur at high gas pressure at pressure times hole diameter values exceeding 10 Torr cm. Experiments in a 0.2 mm diameter hollow electrode geometry with Xe and Ar at atmospheric pressure have shown that the discharges emit excimer radiation. Control of these discharges which have a sustaining voltage of several hundred volts allows their use in flat panel displays. A second mode of operation which allows one to form addressable flat panel displays is the predischarge mode. It could be shown that with a third electrode close to the cathode, but outside the anode-cathode gap, the intensity of the discharge could be linearly varied by varying the voltage at the third electrode in a range below 100 V. The predischarges have a resistive behavior (positive slope of current-voltage characteristics) which allows one to place them in parallel without individual ballast and without segmentation of anode and cathode. This has been demonstrated in a small device with nine addressable microhollow cathode discharges.
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- OSTI ID:
- 338496
- Report Number(s):
- CONF-970559--
- Country of Publication:
- United States
- Language:
- English
Similar Records
Parallel operation of microhollow cathode discharges
Parallel operation of microhollow cathode discharges