skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solubilities of significant compounds in HLW tank supernate solutions - FY 1996 progress report

Technical Report ·
DOI:https://doi.org/10.2172/331669· OSTI ID:331669

The solubilities of two sodium salts of organic acids that are thought to exist in high-level waste at the Hanford Site were measured in tank supernate simulant solutions during FY1996 This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium butyrate and trisodium N-(2-hydroxyethyl)ethylenediaminetriacetate were measured in simulated waste supernate solutions at 25 {degrees}C, 30 {degrees}C, 40 {degrees}C, and 50 {degrees}C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. Two types of tank supernate simulants were used - a 4.O M sodium nitrate - 0.97 M sodium nitrite solution with sodium hydroxide concentrations ranging from O.00003 M to 2.O M and a 2.O M sodium nitrite solution saturated with crystalline sodium nitrate with sodium hydroxide concentrations ranging from 0.1 M to 2. 0 M. The solubilities of sodium butyrate and trisodium N-(2-hydroxyethyl)ethylene- diaminetriacetate in both types of HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. The solubilities of these compounds are similar (in terms of total organic carbon) to sodium glycolate, succinate, caproate, dibutylphosphate, citrate, formate, ethylenediaminetetraacetate, and nitrilotriacetate which were measured previously. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (TOC) of actual tank supernates are generaly much lower than the TOC ranges for the simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is true even if all the dissolved carbon in a given tank supernate is due to only one of these eight soluble compounds (an unlikely situation). Solubilities of all the organic salts decrease with increasing sodium hydoxide and sodium nitrate concentration because of the common ion effect of Na{sup +}. Increasing temperatures has little effect on the solubilities of sodium butyrate and trisodium N-(2-hydroxyethyl)ethylenediaminetriacetate.

Research Organization:
Westinghouse Hanford Co., Richland, WA (United States)
Sponsoring Organization:
USDOE Office of Environmental Restoration and Waste Management, Washington, DC (United States)
DOE Contract Number:
AC06-96RL13200
OSTI ID:
331669
Report Number(s):
WHC-EP-0899-01; ON: DE98058673; BR: EW3120072; TRN: 96000785
Resource Relation:
Other Information: PBD: 30 Sep 1996
Country of Publication:
United States
Language:
English