skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Small angle neutron scattering characterization of the porous structure of carbons prepared using inorganic templates

Journal Article · · Chemistry of Materials
DOI:https://doi.org/10.1021/cm980333j· OSTI ID:329067

Small angle neutron scattering (SANS) was used for the characterization of the microstructure of carbons derived from organic-loaded inorganic template materials that are used as anodes in lithium ion cells. Pillared clays (PILC), layered silicates whose sheets have been permanently propped open by sets of thermally stable molecular props, were used as a template to load the organic precursors. Five organic precursors, namely pyrene, styrene, pyrene/trioxane copolymer, ethylene, and propylene, were used to load the PILC. Pyrolysis was carried out at 700 C under nitrogen atmosphere. From SANS, information has been derived about the pore radius, mass fractal dimension, and the cutoff length (above which the fractal property breaks down) on each carbon. In general, the pore radius ranges from 4 to 11 {angstrom}, and the mass fractal dimension varies in the range from 2.5 to 2.9. Contrast-match SANS studies of carbons wetted in 84% deuterated toluene indicate that a significant amount of pores in carbon from pyrene are not accessible to the solvent, while most of the porous network of carbon from propylene is accessible.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
329067
Journal Information:
Chemistry of Materials, Vol. 11, Issue 2; Other Information: PBD: Feb 1999
Country of Publication:
United States
Language:
English