Ignition dynamics of high explosives
Mechanical insults of granular high explosives (HE) can result in localized areas of elevated temperature, or hot spots. The evolution of these hot spots is a central issue of HE science. Because of the complexity involved, it is worthwhile to study mechanical and reaction processes in isolation. Mechanical processes are isolated and studied using inert materials or weak insults where reaction may be minimal. Likewise, purely thermal processes can be considered to isolate HE reaction response. In this work the authors study the radiant ignition of various HEs of interest, including HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}), PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), RDX (C{sub 3}H{sub 6}N{sub 6}O{sub 6}), TATB (C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502. Initial work has included unconfined samples at ambient pressure in air. Diagnostics have included photodiodes to record first light emission, high speed photography, microthermocouple and IR emission measurement to obtain surface temperature, IR emission of gases above the pellet, and a novel nonlinear optical technique to characterize the dynamic {beta}-{delta} solid phase transformation and the formation of a liquid layer. The authors find that ignition delays at various power levels is very similar for HMX and RDX; except that the minimum radiant flux needed for RDX ignition is higher. The addition of only 5% binder (PBX 9501) causes significantly longer ignition delays at lower heat fluxes compared with HMX alone. TATB and TATB-based explosives exhibit much longer ignition delays than HMX. In contrast to HMX, however, no measurable difference is observed in TATB by the addition of a binder (PBX 9502, aged or pristine).
- Research Organization:
- Los Alamos National Lab., NM (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 319664
- Report Number(s):
- LA-UR--98-2707; CONF-990111--; ON: DE99001009
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effects of binder concentration on the properties of plastic-bonded explosives
THREE-DIMENSIONAL IGNITION AND GROWTH REACTIVE FLOW MODELING OF PRISM FAILURE TESTS ON PBX 9502