New catalysts for the conversion of methane to synthesis gas: Molybdenum and tungsten carbide
- Univ. of Oxford (United Kingdom)
High-surface-area molybdenum and tungsten carbide materials, synthesized by the temperature programming reduction of the relevant metal oxide with methane/hydrogen, are highly efficient catalysts for the conversion of methane to synthesis gas, via the steam reforming, dry reforming, or partial oxidation processes. The activities of the carbides were found to be comparable to those of elemental iridium and ruthenium (well known to be active noble metal catalysts for the reforming of methane), and the conversion and product distribution were in accord with those calculated from the thermodynamic equilibria. At ambient pressure the carbides deactivated, in all the processes, due to the oxidation of the catalyst to MO{sub 2}, while operation at elevated pressure (8 bar) resulted in stabilization of the carbide and no catalyst deactivation for the duration of the experiments (72 h). HRTEM analysis showed that no macroscopic carbon was deposited on the catalysts during the catalyst reactions. The deactivation rate of the carbides reflected the strength of the oxidant used:oxygen > water {approx_equal} carbon dioxide. A deactivation mechanism, via the insertion of O{sup *} resulting in oxide terraces is discussed, and two possible mechanisms for the production of synthesis gas by the methane dry reforming reaction over metal carbides are proposed: noble metal type and redox type.
- OSTI ID:
- 316303
- Journal Information:
- Journal of Catalysis, Journal Name: Journal of Catalysis Journal Issue: 1 Vol. 180; ISSN 0021-9517; ISSN JCTLA5
- Country of Publication:
- United States
- Language:
- English
Similar Records
Dry reforming of hydrocarbon feedstocks
Thermochemical analysis of Mo-C-H system for synthesis of molybdenum carbides
Biomass Gasification in Near- and Super-critical Water: Status and Prospectus
Journal Article
·
Thu Sep 25 00:00:00 EDT 2014
· Catalysis Reviews: Science and Engineering
·
OSTI ID:1159798
Thermochemical analysis of Mo-C-H system for synthesis of molybdenum carbides
Journal Article
·
Mon Mar 25 20:00:00 EDT 2019
· Thermochimica Acta
·
OSTI ID:1597340
Biomass Gasification in Near- and Super-critical Water: Status and Prospectus
Journal Article
·
Sat Oct 01 00:00:00 EDT 2005
· Biomass & Bioenergy, 29(4):269-292
·
OSTI ID:15020482