Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Frequency converter design and manufacturing considerations for the National Ignition Facility

Conference ·
OSTI ID:304598

The National Ignition Facility (NIF), being constructed at Lawrence Livermore National Laboratory (LLNL), comprises 192 laser beams, Figure 1. The lasing medium is neodymium in phosphate glass with a fundamental frequency (1{omega}) of 1.053 {micro}m. Sum frequency generation in a pair of conversion crystals (KDP/KD*P) produces 1.8 Mj of the third harmonic light (3{omega} or {lambda}=0.35). On NIF the frequency conversion crystals are part of the Final Optics Assembly (FOA), whose two principal functions are to convert the laser light to 3{omega} and focus it on target. In addition, the FOA provides a vacuum window to the target chamber, smoothes the on- target irradiance profile, moves the unconverted light away from the target, and provides signals for alignment and diagnostics. The FOA has four Integrated Optics Modules (IOM), Figure 4, each of which contains two 41 cm square crystals are mounted with the full edge support to micro radian angular and micron flatness tolerances. This paper is intended to be an overview of the important factors that affect frequency conversion on NIF. Chief among these are angular errors arising from crystal growth, finishing, and mounting. The general nature of these errors and how they affect frequency conversion, and finally the importance of a frequency conversion metrology tool in assessing converter performance before opto-mechanical assemblies are installed on NIF will be discussed.

Research Organization:
Lawrence Livermore National Lab., CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
304598
Report Number(s):
UCRL-JC--130316; CONF-980636--; ON: DE98058287; BR: YN0100000
Country of Publication:
United States
Language:
English