Upwind vs. Downwind: Loads and Acoustics of a 1.5 MW Wind Turbine
- National Renewable Energy Lab., Golden, CO (United States)
This paper discusses the motivation, preparation, risk mitigation, execution, and results of a full-scale experiment where the conventional upwind rotor of a 1.5 MW wind turbine was operated in a downwind configuration. The experiment took place at the National Renewable Energy Laboratory Flatirons Campus in Colorado, USA, and involved the collection of loads and power together with acoustic measurements from an array of four microphones. To validate the numerical predictions of the aeroelastic solver OpenFAST in terms of loads and performance, 410 min of downwind operation and 960 min of conventional upwind operations were used. In the wind speed range from 4.5 to 12.5 m s-1, the downwind rotor generates higher damage equivalent loads for the blade root flapwise moment, blade root edgewise moment, and tower-base fore-aft moment compared to the upwind rotor. For these metrics of fatigue loads, numerical predictions match the experimental observations well. OpenFAST is, however, also seen underpredicting a power gain in the downwind rotor. In terms of acoustics, the overall sound pressure levels recorded in the field are similar between the upwind and downwind cases, but downwind operation worsens the metrics describing amplitude modulation.
- Research Organization:
- National Renewable Energy Laboratory (NREL), Golden, CO (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Wind Energy Technologies Office
- DOE Contract Number:
- AC36-08GO28308
- OSTI ID:
- 3011841
- Report Number(s):
- NREL/JA-5000-91572
- Journal Information:
- Wind Energy Science, Journal Name: Wind Energy Science Journal Issue: 9 Vol. 10
- Country of Publication:
- United States
- Language:
- English
Similar Records
Gravo-Aeroelastically-Scaled Demonstrator Field Tests to Represent Blade Response of a Flexible Extreme-Scale Downwind Turbine