Shock compression of FeOOH and implications for iron-water interactions in super-earth magma oceans
Journal Article
·
· Nature Communications
more »
- Stanford Univ., CA (United States)
- Eidgenoessische Technische Hochschule (ETH), Zurich (Switzerland)
- Centre National de la Recherche Scientifique (CNRS), Palaiseau (France). Laboratoire pour l'Utilisation des Lasers Intenses (LULI); École Polytechnique, Palaiseau (France); Commissariat a l'Energie Atomique (CEA), Palaiseau (France); Sorbonne Univ., Palaiseau (France)
- Sorbonne Univ., Paris (France); Muséum National d'Histoire Naturelle (MNHN), Paris (France); Centre National de la Recherche Scientifique (CNRS), Paris (France). Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)
- Arizona State Univ., Tempe, AZ (United States)
- Sorbonne Univ., Paris (France); Muséum National d'Histoire Naturelle (MNHN), Paris (France); Centre National de la Recherche Scientifique (CNRS), Paris (France). Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC); Univ. of Grenoble Alpes, Grenoble (France); Centre National de la Recherche Scientifique (CNRS), Grenoble (France). Institut des Sciences de la Terre (ISTerre)
- SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
- Princeton Univ., NJ (United States)
- Stanford Univ., CA (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Iron(Fe)-water reactions in a magma ocean can influence water storage and density of planets. These reactions can form Fe-O-H phases, whose density, melting, and electronic properties at planetary interior conditions are important for informing planetary models. Here, we study natural goethite (α-FeOOH) that is shock-compressed along its principal Hugoniot. Analysis of our velocity interferometer system for any reflector (VISAR) results extends the equation of state to over 800 GPa. X-ray diffraction and VISAR reflectivity results indicate the onset of melting occurs at ~95 GPa with complete melting by 166 GPa, which may be relevant to low seismic velocity anomalies observed above the core-mantle boundary. Analysis of X-ray emission spectroscopy results up to 285 GPa shows the spin crossover of Fe, with dominantly low spin Fe above ~265 GPa in the melt, supporting formation of dense basal magma oceans in terrestrial planets. Using our measured FeOOH densities, we model planetary interiors up to 10 Earth masses. Assuming FeOOH forms via iron-water reactions, the radius decreases by up to 28%, while the density increases by up to 165% compared to the unreacted cases, providing an avenue to investigate water storage and evolution in super-Earths and sub-Neptunes.
- Research Organization:
- SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
- Sponsoring Organization:
- National Aeronautics and Space Administration (NASA); National Science Foundation (NSF); USDOE Office of Science (SC), Fusion Energy Sciences (FES)
- Grant/Contract Number:
- AC02-76SF00515
- OSTI ID:
- 3011713
- Journal Information:
- Nature Communications, Journal Name: Nature Communications; ISSN 2041-1723
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Building wet planets through high-pressure magma-hydrogen reactions
Electrical conductivities of (Mg,Fe)O at extreme pressures and implications for planetary magma oceans
Stability of hydrides in sub-Neptune exoplanets with thick hydrogen-rich atmospheres
Journal Article
·
Tue Oct 28 20:00:00 EDT 2025
· Nature
·
OSTI ID:3013021
Electrical conductivities of (Mg,Fe)O at extreme pressures and implications for planetary magma oceans
Journal Article
·
Wed Jan 14 19:00:00 EST 2026
· Nature Astronomy
·
OSTI ID:3013329
Stability of hydrides in sub-Neptune exoplanets with thick hydrogen-rich atmospheres
Journal Article
·
Sun Dec 17 19:00:00 EST 2023
· Proceedings of the National Academy of Sciences of the United States of America
·
OSTI ID:2470238