Probing autoionization decay lifetimes of the 4d−16ℓ core-excited states in xenon using attosecond noncollinear four-wave-mixing spectroscopy
Journal Article
·
· Journal of Chemical Physics
The decay of core-excited states is a sensitive probe of autoionization dynamics and correlation effects in many-electron systems, occurring on ultrafast timescales. Xenon, with its dense manifold of autoionizing resonances that can be coupled with near-infrared light, provides a platform to investigate these processes. In this work, the autoionization decay lifetimes of 4d-16ℓ (ℓ = s, p, d, …) core-excited states in xenon atoms are probed with extreme ultraviolet (XUV) attosecond noncollinear four-wave-mixing (FWM) spectroscopy. The 4d{5/2,3/2}-16p XUV-bright states (optically dipole-allowed) exhibit decay lifetimes of ∼6 fs, which is consistent with spectator-type decay. In contrast, the 4d{5/2,3/2}-16s and 4d{5/2,3/2}-16d XUV-dark states (optically dipole forbidden) show longer decay lifetimes of ∼20 fs. Photoionization calculations confirm that all core-hole states with 4d character should decay via spectator channels in ≤6 fs, suggesting that the apparently longer dark-state decay times arise from an alternative mechanism. A few-level simulation of the FWM process shows that the inclusion of a nearby, longer-lived dark state can mimic the experimental FWM signal, suggesting population cycling with a second electronic state with non-4d character. Ab initio calculations support the presence of such multielectron excited states in the 60-70 eV range. These results demonstrate that FWM signals can encode coupled-state dynamics when probing complex systems, highlighting the importance of combining theoretical and experimental approaches to disentangle accurate core-level decay pathways and lifetimes.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- US Department of Energy; USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
- Grant/Contract Number:
- AC02-05CH11231
- OSTI ID:
- 3009039
- Journal Information:
- Journal of Chemical Physics, Journal Name: Journal of Chemical Physics Journal Issue: 18 Vol. 163
- Country of Publication:
- United States
- Language:
- English
Similar Records
Measuring autoionization decay lifetimes of optically forbidden inner valence excited states in neon atoms with attosecond noncollinear four-wave-mixing spectroscopy
State-selective probing ofCO 2 autoionizing inner valence Rydberg states with attosecond extreme ultraviolet four-wave-mixing spectroscopy
Polarization-resolved core exciton dynamics in LiF using attosecond transient absorption spectroscopy
Journal Article
·
Sun Mar 26 20:00:00 EDT 2023
· Physical Review A
·
OSTI ID:2228885
State-selective probing of
Journal Article
·
Thu Dec 29 19:00:00 EST 2022
· Physical Review A
·
OSTI ID:1974754
Polarization-resolved core exciton dynamics in LiF using attosecond transient absorption spectroscopy
Journal Article
·
Sun Apr 27 20:00:00 EDT 2025
· Physical Review. B
·
OSTI ID:2571819