solposx: A Python package for determining solar position and atmospheric refraction
Journal Article
·
· Journal of Open Source Software
- Technical University of Denmark, Lyngby (Denmark)
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Universidad Politécnica de Madrid (UPM) (Spain)
solposx is a Python package of reference algorithms for calculating the sun’s position and atmospheric refraction. The package includes 11 solar position algorithms and 6 refraction models from the past 50 years. All functions follow a standardized design pattern, making it easy to compare different algorithms. The provided algorithm implementations have been thoroughly vetted, making the package a valuable research tool and a reliable reference for implementing solar position algorithms in other programming languages or applications.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- Danish Energy Agency (DEA); USDOE National Nuclear Security Administration (NNSA); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
- Grant/Contract Number:
- NA0003525
- OSTI ID:
- 3003004
- Report Number(s):
- SAND--2025-14137J; 1789619
- Journal Information:
- Journal of Open Source Software, Journal Name: Journal of Open Source Software Journal Issue: 115 Vol. 10; ISSN 2475-9066
- Publisher:
- Open Source Initiative - NumFOCUSCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
pvlib python: a python package for modeling solar energy systems
pvlib python: 2023 project update
PVAnalytics: A Python Package for Automated Processing of Solar Time Series Data
Journal Article
·
Thu Sep 06 20:00:00 EDT 2018
· Journal of Open Source Software
·
OSTI ID:1993714
pvlib python: 2023 project update
Journal Article
·
Thu Dec 21 19:00:00 EST 2023
· Journal of Open Source Software
·
OSTI ID:2311276
PVAnalytics: A Python Package for Automated Processing of Solar Time Series Data
Conference
·
Wed Sep 07 00:00:00 EDT 2022
·
OSTI ID:1887283