Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Disposition of nuclear waste using subcritical accelerator-driven systems

Conference ·
OSTI ID:296809
Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the future; and (2) short-term thermal loading (decay heat) that limits capacity. An accelerator-driven neutron source can destroy actinides through fission, and can convert long-lived fission products to shorter-lived or stable isotopes. Studies over the past decade have established that accelerator transmutation of waste (ATW) can have a major beneficial impact on the nuclear waste problem. Specifically, the ATW concept the authors are evaluating: (1) destroys over 99.9% of the actinides; (2) destroys over 99.9% of the Tc and I; (3) separates Sr-90 and Cs-137; (4) separates uranium from the spent fuel; (5) produces electric power.
Research Organization:
Los Alamos National Lab., NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
296809
Report Number(s):
LA-UR--98-2449; CONF-980603--; ON: DE99001238
Country of Publication:
United States
Language:
English