Reactor pressure vessel structural integrity research
Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT{sub NDT}) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.
- Research Organization:
- Oak Ridge National Lab., TN (United States)
- Sponsoring Organization:
- Nuclear Regulatory Commission, Washington, DC (United States)
- DOE Contract Number:
- AC05-84OR21400
- OSTI ID:
- 28353
- Report Number(s):
- CONF-9410216--10; ON: DE95007034
- Country of Publication:
- United States
- Language:
- English
Similar Records
An interim report on shallow-flaw fracture technology development
Reactor pressure vessel structural integrity research in the US Nuclear Regulatory Commission HSST and HSSI Programs