skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deuterium-tritium experiments on TFTR

Abstract

A peak fusion power production of 9.3{plus_minus}0.7 MW has been achieved on the Tokamak Fusion Test Reactor (TFTR) in deuterium plasmas heated by co and counter injected deuterium and tritium neutral beams with a total power of 33.7 MW. The ratio of fusion power output to heating power input is 0.27. At the time of the highest neutron flux the plasma conditions are: {ital T}{sub {ital e}}(0)=11.5 keV, {ital T}{sub {ital i}}(0)=44 keV, {ital n}{sub {ital e}}(0)=8.5{times}10{sup 19} m{sup {minus}3}, and {l_angle}{ital Z}{sub eff}{r_angle}=2.2 giving {tau}{sub {ital E}}=0.24 s. These conditions are similar to those found in the highest confinement deuterium plasmas. The measured D-T neutron yield is within 7% of computer code estimates based on profile measurements and within experimental uncertainties. These plasmas have an inferred central fusion alpha fraction of 0.2% and central fusion power density of 2 MW/m{sup 3} similar to that expected in a fusion reactor. Even though the alpha velocity exceeds the Alfven velocity throughout the time of high neutron output in most high power plasmas, MHD activity is similar to that in comparable deuterium plasmas and Alfven wave activity is low. The measured loss rate of energetic alpha particles is about 3% of themore » total as expected from alphas which are born on unconfined orbits. Compared to pure deuterium plasmas with similar externally applied conditions, the stored energy in electrons and ions is about 25% higher indicating improvements in confinement associated with D-T plasmas and consistent with modest electron heating expected from alpha particles. ICRF heating of D-T plasmas using up to 5.5 MW has resulted in 10 keV increases in central ion and 2.5 keV increases in central electron temperatures in relatively good agreement with code predictions. In these cases heating on the magnetic axis at 2{Omega}{sub {ital T}} gave up to 80% of the ICRF energy to ions. {copyright} {ital 1995 American Institute of Physics.}« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Princeton Plasma Physics Laboratory
OSTI Identifier:
281734
Report Number(s):
CONF-9410130-
Journal ID: APCPCS; ISSN 0094-243X; TRN: 96:017786
DOE Contract Number:  
AC02-76CH03073
Resource Type:
Journal Article
Journal Name:
AIP Conference Proceedings
Additional Journal Information:
Journal Volume: 345; Journal Issue: 1; Conference: 1994 International Conference on Plasma Physics, Foz do Iguacu (Brazil), 24 Oct - 4 Nov 1994; Other Information: PBD: Sep 1995
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION; TFTR TOKAMAK; FUSION YIELD; DEUTERIUM TRITIDE; PLASMA HEATING; NEUTRON FLUX; ALPHA PARTICLES; ELECTRON TEMPERATURE; ION TEMPERATURE; KEV RANGE 10-100; ELECTRON DENSITY; ICR HEATING

Citation Formats

Bretz, N L, Adler, H, Alling, P, Ancher, C, Anderson, H, Anderson, J W, Arunasalam, V, Ascione, G, Barnes, C W, Barnes, G, Batha, S, Bateman, G, Beer, M, Bell, M G, Bell, R, Bitter, M, Blanchard, W, Brunkhorst, C, Budny, R, Bush, C E, Camp, R, Caorlin, M, Carnevale, H, Cauffman, S, Chang, Z, Cheng, C, Chrzanowski, J, Collins, J, Coward, G, Cropper, M, Darrow, D S, Daugert, R, DeLooper, J, Dorland, W, Dudek, L, Duong, H, Durst, R, Efthimion, P C, Ernst, D, Evensen, H, Fisch, N, Fisher, R, Fonck, R J, Fredd, E, Fredrickson, E, Fromm, R, Fu, G, Fujita, T, Furth, H P, Garzotto, V, Gentile, C, Gilbert, J, Giola, J, Gorelenkov, N, Grek, B, Grisham, L R, Hammett, G, Hanson, G R, Hawryluk, R J, Heidbrink, W, Herrmann, H W, Hill, K W, Hosea, J, Hsuan, H, Hughes, M, Hulse, R, Janos, A, Jassby, D L, Jobes, F C, Johnson, D W, Johnson, L C, Kalish, M, Kamperschroer, J, Kesner, J, Kugel, H, Labik, G, Lam, N T, LaMarche, P H, Lawson, E, LeBlanc, B, Levine, J, Levinton, F M, Loesser, D, Long, D, Loughlin, M J, Machuzak, J, Majeski, R, Mansfield, D K, Marmar, E, Marsala, R, Martin, A, Martin, G, Mauel, M, Mazzucato, E, McCarthy, M P, McChesney, J, McCormack, B, McCune, D C, McGuire, K M, McKee, G, Meade, D M, Medley, S S, Mikkelsen, D R, Mirnov, S V, Mueller, D, Murakami, M, Murphy, J A, Nagy, A, Navratil, G A, Nazikian, R, Newman, R, Norris, M, OConnor, T, Oldaker, M, Ongena, J, Osakabe, M, Owens, D K, Park, H, Park, W, Parks, P, Paul, S F, Pearson, G, Perry, E, Persing, R, Petrov, M, Phillips, C K, Phillips, M, Pitcher, S, Pysher, R, Qualls, A L, Raftapoulos, S, Ramakrishnan, S, Ramsey, A, Rasmunsen, D A, Redi, M H, Renda, G, Rewoldt, G, Roberts, D, Rogers, J, Rossmassler, R, Roquemore, A L, Ruskov, E, Sabbaugh, S A, Sasao, M, Schilling, G, Schivell, J, Schmidt, G L, Scillia, R, Scott, S D, Semenov, I, and Senko, T. Deuterium-tritium experiments on TFTR. United States: N. p., 1995. Web. doi:10.1063/1.49012.
Bretz, N L, Adler, H, Alling, P, Ancher, C, Anderson, H, Anderson, J W, Arunasalam, V, Ascione, G, Barnes, C W, Barnes, G, Batha, S, Bateman, G, Beer, M, Bell, M G, Bell, R, Bitter, M, Blanchard, W, Brunkhorst, C, Budny, R, Bush, C E, Camp, R, Caorlin, M, Carnevale, H, Cauffman, S, Chang, Z, Cheng, C, Chrzanowski, J, Collins, J, Coward, G, Cropper, M, Darrow, D S, Daugert, R, DeLooper, J, Dorland, W, Dudek, L, Duong, H, Durst, R, Efthimion, P C, Ernst, D, Evensen, H, Fisch, N, Fisher, R, Fonck, R J, Fredd, E, Fredrickson, E, Fromm, R, Fu, G, Fujita, T, Furth, H P, Garzotto, V, Gentile, C, Gilbert, J, Giola, J, Gorelenkov, N, Grek, B, Grisham, L R, Hammett, G, Hanson, G R, Hawryluk, R J, Heidbrink, W, Herrmann, H W, Hill, K W, Hosea, J, Hsuan, H, Hughes, M, Hulse, R, Janos, A, Jassby, D L, Jobes, F C, Johnson, D W, Johnson, L C, Kalish, M, Kamperschroer, J, Kesner, J, Kugel, H, Labik, G, Lam, N T, LaMarche, P H, Lawson, E, LeBlanc, B, Levine, J, Levinton, F M, Loesser, D, Long, D, Loughlin, M J, Machuzak, J, Majeski, R, Mansfield, D K, Marmar, E, Marsala, R, Martin, A, Martin, G, Mauel, M, Mazzucato, E, McCarthy, M P, McChesney, J, McCormack, B, McCune, D C, McGuire, K M, McKee, G, Meade, D M, Medley, S S, Mikkelsen, D R, Mirnov, S V, Mueller, D, Murakami, M, Murphy, J A, Nagy, A, Navratil, G A, Nazikian, R, Newman, R, Norris, M, OConnor, T, Oldaker, M, Ongena, J, Osakabe, M, Owens, D K, Park, H, Park, W, Parks, P, Paul, S F, Pearson, G, Perry, E, Persing, R, Petrov, M, Phillips, C K, Phillips, M, Pitcher, S, Pysher, R, Qualls, A L, Raftapoulos, S, Ramakrishnan, S, Ramsey, A, Rasmunsen, D A, Redi, M H, Renda, G, Rewoldt, G, Roberts, D, Rogers, J, Rossmassler, R, Roquemore, A L, Ruskov, E, Sabbaugh, S A, Sasao, M, Schilling, G, Schivell, J, Schmidt, G L, Scillia, R, Scott, S D, Semenov, I, & Senko, T. Deuterium-tritium experiments on TFTR. United States. doi:10.1063/1.49012.
Bretz, N L, Adler, H, Alling, P, Ancher, C, Anderson, H, Anderson, J W, Arunasalam, V, Ascione, G, Barnes, C W, Barnes, G, Batha, S, Bateman, G, Beer, M, Bell, M G, Bell, R, Bitter, M, Blanchard, W, Brunkhorst, C, Budny, R, Bush, C E, Camp, R, Caorlin, M, Carnevale, H, Cauffman, S, Chang, Z, Cheng, C, Chrzanowski, J, Collins, J, Coward, G, Cropper, M, Darrow, D S, Daugert, R, DeLooper, J, Dorland, W, Dudek, L, Duong, H, Durst, R, Efthimion, P C, Ernst, D, Evensen, H, Fisch, N, Fisher, R, Fonck, R J, Fredd, E, Fredrickson, E, Fromm, R, Fu, G, Fujita, T, Furth, H P, Garzotto, V, Gentile, C, Gilbert, J, Giola, J, Gorelenkov, N, Grek, B, Grisham, L R, Hammett, G, Hanson, G R, Hawryluk, R J, Heidbrink, W, Herrmann, H W, Hill, K W, Hosea, J, Hsuan, H, Hughes, M, Hulse, R, Janos, A, Jassby, D L, Jobes, F C, Johnson, D W, Johnson, L C, Kalish, M, Kamperschroer, J, Kesner, J, Kugel, H, Labik, G, Lam, N T, LaMarche, P H, Lawson, E, LeBlanc, B, Levine, J, Levinton, F M, Loesser, D, Long, D, Loughlin, M J, Machuzak, J, Majeski, R, Mansfield, D K, Marmar, E, Marsala, R, Martin, A, Martin, G, Mauel, M, Mazzucato, E, McCarthy, M P, McChesney, J, McCormack, B, McCune, D C, McGuire, K M, McKee, G, Meade, D M, Medley, S S, Mikkelsen, D R, Mirnov, S V, Mueller, D, Murakami, M, Murphy, J A, Nagy, A, Navratil, G A, Nazikian, R, Newman, R, Norris, M, OConnor, T, Oldaker, M, Ongena, J, Osakabe, M, Owens, D K, Park, H, Park, W, Parks, P, Paul, S F, Pearson, G, Perry, E, Persing, R, Petrov, M, Phillips, C K, Phillips, M, Pitcher, S, Pysher, R, Qualls, A L, Raftapoulos, S, Ramakrishnan, S, Ramsey, A, Rasmunsen, D A, Redi, M H, Renda, G, Rewoldt, G, Roberts, D, Rogers, J, Rossmassler, R, Roquemore, A L, Ruskov, E, Sabbaugh, S A, Sasao, M, Schilling, G, Schivell, J, Schmidt, G L, Scillia, R, Scott, S D, Semenov, I, and Senko, T. Fri . "Deuterium-tritium experiments on TFTR". United States. doi:10.1063/1.49012.
@article{osti_281734,
title = {Deuterium-tritium experiments on TFTR},
author = {Bretz, N L and Adler, H and Alling, P and Ancher, C and Anderson, H and Anderson, J W and Arunasalam, V and Ascione, G and Barnes, C W and Barnes, G and Batha, S and Bateman, G and Beer, M and Bell, M G and Bell, R and Bitter, M and Blanchard, W and Brunkhorst, C and Budny, R and Bush, C E and Camp, R and Caorlin, M and Carnevale, H and Cauffman, S and Chang, Z and Cheng, C and Chrzanowski, J and Collins, J and Coward, G and Cropper, M and Darrow, D S and Daugert, R and DeLooper, J and Dorland, W and Dudek, L and Duong, H and Durst, R and Efthimion, P C and Ernst, D and Evensen, H and Fisch, N and Fisher, R and Fonck, R J and Fredd, E and Fredrickson, E and Fromm, R and Fu, G and Fujita, T and Furth, H P and Garzotto, V and Gentile, C and Gilbert, J and Giola, J and Gorelenkov, N and Grek, B and Grisham, L R and Hammett, G and Hanson, G R and Hawryluk, R J and Heidbrink, W and Herrmann, H W and Hill, K W and Hosea, J and Hsuan, H and Hughes, M and Hulse, R and Janos, A and Jassby, D L and Jobes, F C and Johnson, D W and Johnson, L C and Kalish, M and Kamperschroer, J and Kesner, J and Kugel, H and Labik, G and Lam, N T and LaMarche, P H and Lawson, E and LeBlanc, B and Levine, J and Levinton, F M and Loesser, D and Long, D and Loughlin, M J and Machuzak, J and Majeski, R and Mansfield, D K and Marmar, E and Marsala, R and Martin, A and Martin, G and Mauel, M and Mazzucato, E and McCarthy, M P and McChesney, J and McCormack, B and McCune, D C and McGuire, K M and McKee, G and Meade, D M and Medley, S S and Mikkelsen, D R and Mirnov, S V and Mueller, D and Murakami, M and Murphy, J A and Nagy, A and Navratil, G A and Nazikian, R and Newman, R and Norris, M and OConnor, T and Oldaker, M and Ongena, J and Osakabe, M and Owens, D K and Park, H and Park, W and Parks, P and Paul, S F and Pearson, G and Perry, E and Persing, R and Petrov, M and Phillips, C K and Phillips, M and Pitcher, S and Pysher, R and Qualls, A L and Raftapoulos, S and Ramakrishnan, S and Ramsey, A and Rasmunsen, D A and Redi, M H and Renda, G and Rewoldt, G and Roberts, D and Rogers, J and Rossmassler, R and Roquemore, A L and Ruskov, E and Sabbaugh, S A and Sasao, M and Schilling, G and Schivell, J and Schmidt, G L and Scillia, R and Scott, S D and Semenov, I and Senko, T},
abstractNote = {A peak fusion power production of 9.3{plus_minus}0.7 MW has been achieved on the Tokamak Fusion Test Reactor (TFTR) in deuterium plasmas heated by co and counter injected deuterium and tritium neutral beams with a total power of 33.7 MW. The ratio of fusion power output to heating power input is 0.27. At the time of the highest neutron flux the plasma conditions are: {ital T}{sub {ital e}}(0)=11.5 keV, {ital T}{sub {ital i}}(0)=44 keV, {ital n}{sub {ital e}}(0)=8.5{times}10{sup 19} m{sup {minus}3}, and {l_angle}{ital Z}{sub eff}{r_angle}=2.2 giving {tau}{sub {ital E}}=0.24 s. These conditions are similar to those found in the highest confinement deuterium plasmas. The measured D-T neutron yield is within 7% of computer code estimates based on profile measurements and within experimental uncertainties. These plasmas have an inferred central fusion alpha fraction of 0.2% and central fusion power density of 2 MW/m{sup 3} similar to that expected in a fusion reactor. Even though the alpha velocity exceeds the Alfven velocity throughout the time of high neutron output in most high power plasmas, MHD activity is similar to that in comparable deuterium plasmas and Alfven wave activity is low. The measured loss rate of energetic alpha particles is about 3% of the total as expected from alphas which are born on unconfined orbits. Compared to pure deuterium plasmas with similar externally applied conditions, the stored energy in electrons and ions is about 25% higher indicating improvements in confinement associated with D-T plasmas and consistent with modest electron heating expected from alpha particles. ICRF heating of D-T plasmas using up to 5.5 MW has resulted in 10 keV increases in central ion and 2.5 keV increases in central electron temperatures in relatively good agreement with code predictions. In these cases heating on the magnetic axis at 2{Omega}{sub {ital T}} gave up to 80% of the ICRF energy to ions. {copyright} {ital 1995 American Institute of Physics.}},
doi = {10.1063/1.49012},
journal = {AIP Conference Proceedings},
number = 1,
volume = 345,
place = {United States},
year = {1995},
month = {9}
}