skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Precision linear shaped charge analyses for severance of metals

Technical Report ·
DOI:https://doi.org/10.2172/279703· OSTI ID:279703

The Precision Linear Shaped Charge (PLSC) design concept involves the independent fabrication and assembly of the liner (wedge of PLSC), the tamper/confinement, and explosive. The liner is the most important part of a linear shaped charge (LSC) and should be fabricated by a more quality controlled, precise process than the tamper material. Also, this concept allows the liner material to be different from the tamper material. The explosive can be loaded between the liner and tamper as the last step in the assembly process rather than the first step as in conventional LSC designs. PLSC designs have been shown to produce increased jet penetrations in given targets, more reproducible jet penetration, and more efficient explosive cross-section geometries using a minimum amount of explosive. The Linear Explosive Shaped Charge Analysis (LESCA) code developed at Sandia National Laboratories has been used to assist in the design of PLSCs. LESCA predictions for PLSC jet tip velocities, jet-target impact angles, and jet penetration in aluminum and steel targets are compared to measured data. The advantages of PLSC over conventional LSC are presented. As an example problem, the LESCA code was used to analytically develop a conceptual design for a PLSC component to sever a three-inch thick 1018 steel plate at a water depth of 500 feet (15 atmospheres).

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
279703
Report Number(s):
SAND-96-2031; ON: DE96014312; TRN: 96:004893
Resource Relation:
Other Information: PBD: Aug 1996
Country of Publication:
United States
Language:
English