skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fractal nature of viscous fingering in three-dimensional pore-level models

Journal Article · · Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
;  [1];  [2]
  1. Department of Physics, West Virginia University, P.O. Box 6315, Morgantown, West Virginia 26506-6315 (United States)
  2. U.S. Department of Energy, Morgantown Energy Technology Center, Morgantown, West Virginia 26507-0880 (United States)

Using three-dimensional pore-level models of random porous media, we have studied viscous fingering in {open_quote}{open_quote}two-phase,{close_quote}{close_quote} miscible flow. When the viscosity ratio {ital M} (={mu}{sub {ital D}}/{mu}{sub {ital I}}, the ratio of the viscosity of the displaced fluid to that of the injected fluid), is infinite, the flow is known to be modeled by diffusion-limited aggregation (DLA). We have observed and characterized the crossover from fractal flow at short times or large viscosity ratios to compact (i.e., Euclidean) flow at later times. In our pore-level model of three-dimensional flow in the limit of infinite capillary number (zero surface tension), the low viscosity fluid is injected at constant pressure on one face of the model porous medium. This modeling shows that this flow is fractal for large viscosity ratios ({ital M}=10 000), consistent with DLA. For realistic viscosities ({ital M}=30{endash}1000), our modeling of the unstable flow shows that, although the flows are initially fractal, they become linear on a time scale {tau}, increasing as {tau}={tau}{sub 0}{ital M}{sup 0}{sup .}{sup 1}{sup 6}. This characteristic crossover time predicts that the flow become compact for patterns larger than a characteristic length, which increases with viscosity ratio as {ital l}={ital l}{sub 0}{ital M}{sup 0}{sup .}{sup 1}{sup 6}{sup /}{sup (}{sup {ital D}}{sub {ital f}}{minus}2), where {ital D}{sub {ital f}} is the fractal dimension. Once compact, the saturation front advances as {ital x}{approx_equal}{ital v}{sub 0}{ital M}{sup 0}{sup .}{sup 1}{sup 6}{ital t}; the factor {ital M}{sup 0}{sup .}{sup 1}{sup 6} acts as a three-dimensional Koval factor. {copyright} {ital 1996 The American Physical Society.}

OSTI ID:
279002
Journal Information:
Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Vol. 53, Issue 3; Other Information: PBD: Mar 1996
Country of Publication:
United States
Language:
English

Similar Records

Fractal nature of viscous fingering in two-dimensional pore level models
Journal Article · Sat Apr 01 00:00:00 EST 1995 · AIChE Journal · OSTI ID:279002

Dynamics of growing interfaces from the simulation of unstable flow in random media
Journal Article · Sun May 01 00:00:00 EDT 1994 · Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics; (United States) · OSTI ID:279002

Two-Phase Flow in Porous Media: Predicting Its Dependence on Capillary Number and Viscosity Ratio
Journal Article · Sat Jan 01 00:00:00 EST 2011 · Transport in Porous Media · OSTI ID:279002