Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Paramagnetic Meissner effect in Nb

Journal Article · · Physical Review, B: Condensed Matter
; ; ; ; ; ; ; ; ;  [1]
  1. Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

The paramagnetic Meissner effect (PME), or Wohlleben effect, in which the field-cooled magnetization of superconducting samples is paramagnetic below {ital T}{sub {ital c}}, has been reported to occur in some samples of a variety of high-{ital T}{sub {ital c}} cuprate superconductors. It has been proposed that the effect arose in granular hole-doped cuprates from current loops with {pi} phase shifts of the superconducting order parameter at some grain-boundary junctions. It is argued that such behavior would be expected to occur in a {ital d}-wave superconductor, but not in a conventional {ital s}-wave superconductor. To test this hypothesis, we have searched for the occurrence of the effect in Nb, and have confirmed a recent report by Minhaj {ital et} {ital al}. of its occurrence in some Nb samples. For these studies, the effects of stray fields and field gradients in the measurement volume of the superconducting quantum interference device magnetometer have been carefully considered to rule out the possibility that measurement artifacts might be responsible for the apparent paramagnetic behavior in Nb. The {ital M}({ital T}) and {ital M}({ital H}) curves obtained in Nb samples that show the PME also show remarkably strong resemblance to those curves reported for the cuprate materials exhibiting the PME. Evidence is presented that the effect arises from inhomogeneously trapped flux, and is strongly influenced by sample geometry and surface effects. These results suggest that, for the effect to be observable, {ital T}{sub {ital c}} on the sample surface must be different from the bulk {ital T}{sub {ital c}}. The occurrence of the PME in Nb strongly suggests that the observation of this effect is unrelated to {ital d}-wave superconductivity. {copyright} {ital 1996 The American Physical Society.}

DOE Contract Number:
W-31109-ENG-38
OSTI ID:
277313
Journal Information:
Physical Review, B: Condensed Matter, Journal Name: Physical Review, B: Condensed Matter Journal Issue: 2 Vol. 53; ISSN 0163-1829; ISSN PRBMDO
Country of Publication:
United States
Language:
English

Similar Records

Paramagnetic Meissner effect in conventional Nb superconductors
Journal Article · Thu Oct 31 23:00:00 EST 1996 · Journal of Low Temperature Physics · OSTI ID:457207

Reply to {open_quotes}Comment on {open_quote}Paramagnetic Meissner effect in Nb{close_quote} {close_quotes}
Journal Article · Sun Jun 01 00:00:00 EDT 1997 · Physical Review, B: Condensed Matter · OSTI ID:509056

Paramagnetic Meissner effect in superconducting single crystals of Ba{sub 1-x}K{sub x}BiO{sub 3}
Journal Article · Thu Oct 31 23:00:00 EST 1996 · Journal of Low Temperature Physics · OSTI ID:457215