High-temperature, high-pressure in situ reaction monitoring of heterogeneous catalytic processes under supercritical conditions by CIR-FTIR
- Worcester Polytechnic Institute, Worcester, MA (United States)
An in situ cylindrical internal reflection infrared technique (CIR-FTIR) was developed, which permits the real time analysis of supercritical fluids and heterogeneous catalytic processes at temperatures up to 500{degrees}C and 1000 psi pressure (1 psi = 6850 Pa). High-quality spectra were obtained at both high temperatures and high pressures under in situ reaction conditions. The molecular thermal transitions that a hydrocarbon undergoes in the supercritical regime, the properties of a hydrocarbon within the pores of a zeolite, and the interactions of a hydrocarbon with the active acid sites of the zeolite during catalytic cracking were studied by this technique. The results showed that the stretching frequency of the C-H bonds was altered in supercritical heptane, probably due to intermolecular hydrogen bonding. IR data also demonstrated an increased heptane concentration within the micropores of a commercial catalytic cracking, Y-type zeolite (promoted Octacat) during catalytic cracking at supercritical conditions. This method also enabled a determination of the types of hydroxyl groups contained within the zeolite (i.e., Bronsted acid sites in the supercages and sodalite cages, terminal silanols, and superacid sites) and their relative concentration changes with increasing temperature. Finally, the alteration of the concentrations of the various catalytic active sites together with the appearance of new bands was also monitored in situ during catalytic cracking of heptane at 475{degrees}C under subcritical and supercritical conditions. 38 refs., 11 figs.
- OSTI ID:
- 263786
- Journal Information:
- Journal of Catalysis, Journal Name: Journal of Catalysis Journal Issue: 1 Vol. 159; ISSN 0021-9517; ISSN JCTLA5
- Country of Publication:
- United States
- Language:
- English
Similar Records
An in situ CIR-FTIR study of n-heptane cracking over a commercial Y-type zeolite under subcritical and supercritical conditions
A kinetic study of n-heptane catalytic cracking over a commercial Y-type zeolite under supercritical and subcritical conditions
On the Nature of Extra-Framework Aluminum Species and Improved Catalytic Properties in Steamed Zeolites
Journal Article
·
Sun Sep 01 00:00:00 EDT 1996
· Journal of Catalysis
·
OSTI ID:494283
A kinetic study of n-heptane catalytic cracking over a commercial Y-type zeolite under supercritical and subcritical conditions
Journal Article
·
Sun Sep 01 00:00:00 EDT 1996
· Journal of Catalysis
·
OSTI ID:494284
On the Nature of Extra-Framework Aluminum Species and Improved Catalytic Properties in Steamed Zeolites
Journal Article
·
Wed Apr 06 00:00:00 EDT 2022
· Molecules
·
OSTI ID:1893324